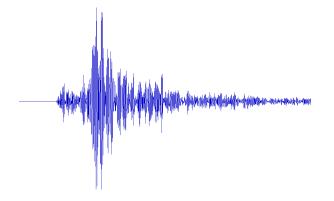


BOLETÍN DE INFORMACIÓN SÍSMICA

Enero 2012

GRUPO RESNOM

Departamento de Sismología


División de Ciencias de la Tierra

Centro de Investigación Científica y de Educación Superior de Ensenada, BC.

ÉPOCA II

Ensenada Baja - California, México

PERSONAL DE RESNOM

Investigador

Dr. Víctor M. Wong Ortega

Responsables del contenido y edición

Dr. Víctor M Wong Ortega

MTIC Julia del C Sánchez R.

Téc. Francisco Javier Farfán S.

Téc. Ignacio Méndez Figueroa

LCC. Sergio M. Arregui O.

M.C. Alejandra Núñez Leal

Grupo Técnico

Arregui Ojeda Sergio Manuel
Díaz de Cossio Batani Guillermo
Gálvez Valdez Jesús Óscar
Farfán Sánchez Francisco Javier
López Lara Alejandro
Méndez Figueroa Ignacio
Núñez Leal María Alejandra
Orozco León Luis Raúl
Sánchez Rodríguez Julia del Carmen

INFORMACIÓN GENERAL

La Red Sísmica del Noroeste de México (RESNOM) es una red telemétrica operada desde 1980 por el Departamento de Sismología, División de Ciencias de la Tierra (Figura 1), CICESE. La cual registra información digital de temblores locales y regionales del norte de Baja California y el oeste de Sonora (noroeste).

1.1 OBJETIVO DEL BOLETÍN

El Boletín de Información Sísmica tiene como objetivo difundir los resultados del procesado de las señales sísmicas registradas por RESNOM. Estas señales corresponden a temblores ocurridos en la región noroeste de México y el norte del Golfo de California.

El boletín consiste en un listado de tiempos de origen, localizaciones hipocentrales, magnitud y algunos parámetros relativos a la localización de los sismos registrados (error cuadrático medio de los residuales de tiempo y número de lecturas utilizadas en la localización). Adicionalmente, se anexa mapa que muestra la distribución epicentral de los sismos localizados.

A continuación se presenta una breve descripción acerca de:

- La instrumentación de las Estaciones.
- Los sistemas de adquisición de datos.
- El procesamiento para localizar.
- Cálculo de la magnitud.

1.2 INSTRUMENTACIÓN DE LAS ESTACIONES

RESNOM consiste en 4 estaciones de periodo corto (1 s) y 11 estaciones de Banda ancha (0.01-50 Hz) ver Tabla 1.

Las señales sísmicas detectadas por los sismómetros de periodo corto (Teledyne S 500 o Mark L4C) son digitalizadas en el sitio de registro con una resolución de 12 bits a una razón de 40 muestras por segundo/canal. Las señales digitales se codifican, serializan, modulan en FSK (Frequency Shift Keying) y se transmiten en tiempo real (vía enlaces de radio VHF y UHF) al centro de procesado en Ensenada, Baja California, en algunos casos se utiliza el Internet.

Las estaciones de Banda Ancha equipadas con grabadoras REFTEK modelo 130-1 de 6 componentes de 24 bits y sensores: a) de Velocidad marca GURALP modelo 3ESPC, b) de Aceleración marca Kinemetrics-Episensor modelo FBA ES-T y estaciones DAS 72A y sensores triaxiales Geotech (KS-2000), y la estación CPX con digitalizador DM24-3M y sensor Guralp CMG-40T. Las señales sísmicas se digitalizan a razón de 100 muestras por canal y se envían al CICESE utilizando el Internet comercial y en algunos casos satelital.

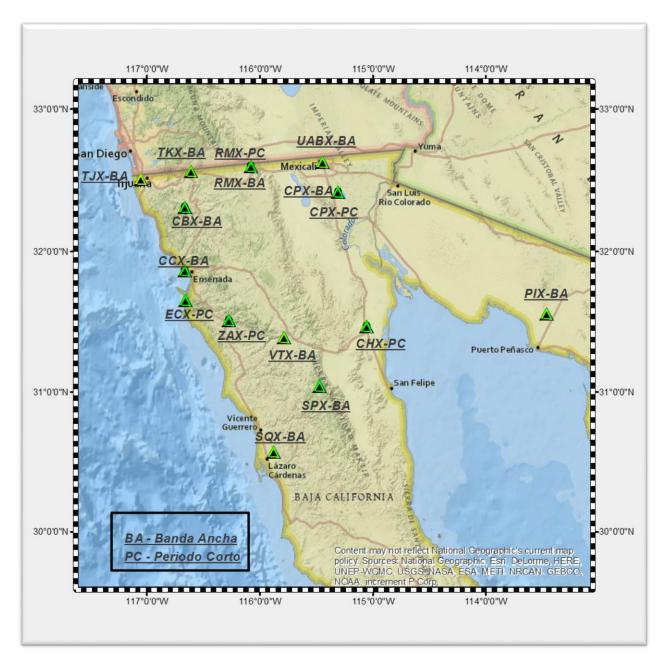


Figura 1– Localizaciones de las Estaciones RESNOM enero – 2012.

ID	DAS	N/S	m/s	Velocidad	S/N	Aceleración	S/N	Latitud	Longitud	Elev m	TIPO ENLACE	Comunicación	Identificación	Localización	Fecha Instalación	Fecha Desinstalación
----	-----	-----	-----	-----------	-----	-------------	-----	---------	----------	-----------	-------------	--------------	----------------	--------------	----------------------	-------------------------

	Estaciones de Banda Ancha																
1.	СВХ	72 A-07	8129	100	GURALP CMG-40T	T4672			32.3131	-116.6636	1250	Radio	Radio <i>⇔ CICESE</i>	Cerro Bola	En Cerro Bola – BC	06-06-2001	
2.	ссх	REFTEK 130-1	B07E	100	GURALP	T36760	FBA ES-T	4509	31.8679	-116.6645	36	Red CICESE	Red Interna CICESE	CICESE	Sótano del edificio de Ciencias de la Tierra - CICESE	00-06-2011	
3.	СРХ	DM24-3M		100	GURALP CMG-40T				32.4195	-115.3050	194	Internet-VPN de C4	CPX <i>⇔</i> C4 <i>⇔</i> CICESE	Cerro Prieto	30 km al Sur de Mexicali – en el volcán de Cerro Prieto – BC	11-09-2001	
4.	PIX	REFTEK 130-1	B07A	100	GURALP 3ESPC	T36757	FBA ES-T	4508	31.5629	113.4599	77	Internet satelital	PIX⇔C4⇔CICESE	Pinacate	Localidad del Pinacate – Sonora	15-07-2011	
5.	RMX	REFTEK 130-1	B089	100	GURALP 3ESPC	T36756	FBA ES-T	4507	32.5535	116.0288	1278	Internet-VPN de C4	RMX⇔CICESE	Rumorosa	La Rumorosa - BC	11-11-2012	
6.	SPX	REFTEK 72 A REFTEK 130-1	 B083	100 100	GEOTECH KS-2000 GURALP 3ESPC	 T36759	 FBA ES-T	 4499	31.0451	-115.4660	2835	Internet	SFX⇔CICESE	San Pedro Mártir	Observatorio de San Pedro Mártir – BC (170 km al sureste de la ciudad de Ensenada – BC)	29-05-2001 26-06-2011 ¹	25-05-2011
7.	sqx	REFTEK 130-1	B08C	100	GURALP 3ESPC	T36758	FBA ES-T	4506	30.5761	115.875	101	Internet Satelital	SQX⇔CICESE	San Quintín	San Quintín - BC	08-12-2011	
8.	TJX	REFTEK 130-1	B077	100	GURALP 3ESPC	T36750	FBA ES-T	4511	32.5102	117.0543	210	Internet	TJX⇔CICESE	Tijuana	Protección Civil en la cd. De Tijuana – BC	17-11-2011	
9.	ткх	REFTEK 130-1	B08B	100	GURALP 3ESPC	T36749	FBA ES-T	4505	32.5687	116.6075	541	Internet	TKX <i>⇔</i> C4 <i>⇔</i> CICESE	Tecate	Edificio C4 de la ciudad de Tecate	30-11-2011	
10	. UABX	REFTEK 130-1	B082	100	GURALP 3ESPC	T36753	FBA ES-T	4510	32.6316	115.4447	44	Internet	UABX⇔CICESE	UABC Mexicali	Edificio de Ingeniería – Mexicali de la UABC	06-07-2011	

¹ Cambian los instrumentos de Banda Ancha

	ID	DAS	N/S	m/s	Velocidad	S/N	Aceleración	S/N	Latitud	Longitud	Elev m	TIPO ENLACE	Comunicación	Identificación	Localización	Fecha Instalación	Fecha Retiro
11.	VTX	REFTEK 130-1	B08A	100	GURALP 3ESPC	T36705	FBA ES-T	4512	31.3914	115.7840	746	Internet Satelital	VTX⇔CICESE	Valle de la Trinidad	Valle de la Trinidad	11-11-2011	
	Estaciones de Periodo Corto																
1.	СНХ	Estación Sismológica Digital Modelo 1a		40	Teledyne S-500				31.4721	-115.0521	40	Radio Enlaces – Internet	CHX≠CON°.≠CICESE	El Chinero	Cerro el Chinero, Ensenada – BC	17-05-1983	
2.	СРХ	Estación Sismológica Digital Modelo 1a		40	Teledyne S-500				32.4178	-115.3040	194	Radio Enlaces – Internet	CPX <i>⇔</i> C4 <i>⇔</i> CICESE	Cerro Prieto	30 km al Sur de Mexicali – en el volcán de Cerro Prieto – BC	08-05-2001	
3.	ECX	Estación Sismológica Digital Modelo 1a		40	Teledyne S-500				31.6570	-116.5978	1040	Radio Enlaces – Internet	ECX⇔CON.⇔CICESE	Esteban Cantú	Ejido Esteban Cantú - BC	08-05-1985	
4.	RMX	Estación Sismológica Digital Modelo 1a		40	Teledyne S-500				32.6025	-116.0786	1420	Radio Enlaces	RMX⇔CON⇔CICESE	La Rumorosa	Cerro la Rumorosa,	19-04-1999	
	ZAX	Estación Sismológica Digital Modelo 1a		40	Teledyne S-500				31.5137	-116.2730	947	Radio Enlaces – Internet	ZAX⇔CON⇔CICESE	El Zacatón	Localidad del Zacatón, Ensenada – BC.	22-04-2009	01-13-2012

Tabla 1 – Información de las estaciones de RESNOM enero 2012.

² Concentrador

Enero 2012

1.3 ADQUISICIÓN DE DATOS

El sistema de adquisición de datos se divide en tres partes: a) Captura in situ; b) Transmisión de datos; c) Recepción de datos. Los sistemas de adquisición de datos de periodo corto y periodo largo y procesando con el sistema operativo Linux.

RESNOM tiene 3 centros de recepción secundarios: Ejido Nuevo León (Valle de Mexicali), San Pedro Mártir, en Sierra Juárez y San Luis Río Colorado (Sonora). Un centro de recepción principal en la ciudad de Ensenada (CICESE). Las señales de periodo corto (5 en el principal y 4 en los secundarios) se reciben a través de una tarjeta serial y la señal de tiempo se recibe por otro puerto serie una computadora. Una vez que las señales se decodifican, se separan por componente y se les incluye la marca de tiempo, pasan por un algoritmo de detección que elimina las señales correspondientes a disparos en falso (ruido) y se almacenan en el disco duro los eventos sísmicos. Las señales registradas en los centros de recepción secundaria se transmiten al principal vía internet. Una descripción más detallada del sistema de adquisición de datos de periodo corto y largo se encuentra en Arregui [2004].

El sistema de adquisición de datos de banda ancha está configurado para enviar la información de dos modos: continuo y por evento. En el primero toda la información generada se envía y graba en cada una de las tres computadoras anfitrionas ubicadas en: Ejido Nuevo León (Valle de Mexicali), San Pedro Mártir y CICESE. Se hace uso de Internet para la recuperación de los datos. Por evento se envía (fecha y hora) para la recuperación.

1.4 LOCALIZACIONES HIPOCENTRALES

Los datos registrados por RESNOM se procesan con SEISAN (paquetes de programas para el análisis de datos sísmicos) [Haskov y Ottemöller, 1999]. Las determinaciones preliminares de los hipocentros se obtienen con el programa HYPOCENTER (Lienert y Haskov, 1995) el cual es parte de SEISAN. Dos modelos de velocidad de corteza con capas planas, paralelas y con velocidades constantes, se usan en el proceso, de localización de los hipocentros de eventos locales y regionales; uno para el Valle de Mexicali y otro para el Macizo Rocoso Peninsular de Baja California. Una versión modificada del modelo de velocidades propuesto por McMechan y Mooney [1980] para el Valle Imperial, se usa para localizar los eventos del Valle de Mexicali (Tabla 2). Para temblores del Macizo Rocoso Peninsular (Tabla 3), el modelo de velocidades utilizado es el de Nava y Brune [1982].

Velocidad de Onda P (km/s)	Profundidad a la capa (km)
1.700	0.000
2.000	0.100
2.300	0.730
2.600	1.750
3.000	2.940
5.000	5.620
6.000	10.000
7.800	20.000

Tabla 2. Modelo de velocidad para el Valle de Mexicali.

Velocidad de Onda P (km/s)	Profundidad a la capa (km)
5.600	0.000
6.600	5.000
7.000	20.000
8.000	42.000

Tabla 3. Modelo de velocidad para el Macizo Rocoso Peninsular.

1.5 CÁLCULO DE MAGNITUDES

Las magnitudes se calculan con base en la duración de la señal (magnitud de coda) o en la amplitud del movimiento del suelo (magnitud local). La magnitud coda se obtiene con la fórmula propuesta por González y García [1986]

$$Mc = -0.85 + 2.24 \times \log_{10} T \tag{1}$$

Donde T es la longitud de la coda (en segundos). Esta relación se usa con datos de las Estaciones CBX, RDX, PBX, ECX y RMX (

				Estaciones d	e Banda Aı	ncha	
1.	СВХ	Cerro Bola	32.3131	-116.6636	1250	-0.17	Rocas volcánicas no diferenciadas
2.	ссх	CICESE	31.8679	-116.6645	36		Rocas volcánicas no diferenciadas Sobre base de concreto
3.	СРХ	Cerro Prieto	32.4195	-115.3050	194	-0.42	Sedimentarias Continentales (Roca Magmática)
4.	PIX	Pinacate	31.5629	113.4599	77		Sedimentarias Marinas
5.	RMX	Rumorosa, BC	32.5535	116.0288	1278		(Graníticas y Gabroides) (Tonalita)
6.	SPX	San Pedro Mártir	31.0451	-115.4660	2835	+0.22	Batolíticas Roca Sedimentaria Tonalita
7.	SQX	San Quintín	30.5761	-115.875	101		Formación Alisitos Sedimentarias - volcánicas
8.	TJX	Tijuana	32.5102	-117.0543	210		Roca Sedimentaria Marina
9.	ТКХ	Tecate	32.5687	-116.6075	541		Roca Sedimentaria (Gabro)
10.	UABX	UABC Mexicali	32.6316	-115.4447	44		Rocas Sedimentarias (Aluvión)
11.	VTX	Valle de la Trinidad	31.3914	-115.7840	746		Roca Sedimentaria (Tonalita)
				Estaciones de	e Periodo (Corto	
1.	СНХ	El Chinero	31.4721	-115.0521	40	+0.15	Rocas volcánicas (Andesita)
2.	СРХ	Cerro Prieto	32.4195	-115.3050	194	-0.42	Sedimentarias Continentales (Roca Magmática)
3.	ECX	Esteban Cantú	31.6570	-116.5978	1040	-0.09	Formación Alisitos sedimentaria
4.	RMX	Rumorosa	32.6025	-116.0786	1420		(Graníticas y Gabroides) (Tonalita)
	ZAX	El Zacatón	31.5137	-116.2730	947		Roca volcánica no diferenciada

Tabla 4), todas ellas localizadas en el Macizo Rocoso Peninsular. Cuando se dispone de amplitudes corregidas por la respuesta instrumental (amplitudes Wood-Anderson sintéticas en nm), se calculan las magnitudes locales usando las fórmulas de Vidal y Munguía [1999].

Para temblores del ambiente sedimentario del Valle de Mexicali se utiliza

$$M_L = \log(A) + 1.0134 \times \log_{10}(r/100) + 0.0025 \times (r - 100) + 3.0$$
 (2)

y para eventos registrados en el Macizo Rocoso Peninsular

				Estaciones d	e Banda Aı	ncha	
12.	СВХ	Cerro Bola	32.3131	-116.6636	1250	-0.17	Rocas volcánicas no diferenciadas
13.	ссх	CICESE	31.8679	-116.6645	36		Rocas volcánicas no diferenciadas Sobre base de concreto
14.	СРХ	Cerro Prieto	32.4195	-115.3050	194	-0.42	Sedimentarias Continentales (Roca Magmática)
15.	PIX	Pinacate	31.5629	113.4599	77		Sedimentarias Marinas
16.	RMX	Rumorosa, BC	32.5535	116.0288	1278		(Graníticas y Gabroides) (Tonalita)
17.	SPX	San Pedro Mártir	31.0451	-115.4660	2835	+0.22	Batolíticas Roca Sedimentaria Tonalita
18.	SQX	San Quintín	30.5761	-115.875	101		Formación Alisitos Sedimentarias - volcánicas
19.	TJX	Tijuana	32.5102	-117.0543	210		Roca Sedimentaria Marina
20.	TKX	Tecate	32.5687	-116.6075	541		Roca Sedimentaria (Gabro)
21.	UABX	UABC Mexicali	32.6316	-115.4447	44		Rocas Sedimentarias (Aluvión)
22.	VTX	Valle de la Trinidad	31.3914	-115.7840	746		Roca Sedimentaria (Tonalita)
				Estaciones de	e Periodo (Corto	
5.	СНХ	El Chinero	31.4721	-115.0521	40	+0.15	Rocas volcánicas (Andesita)
6.	СРХ	Cerro Prieto	32.4195	-115.3050	194	-0.42	Sedimentarias Continentales (Roca Magmática)
7.	ECX	Esteban Cantú	31.6570	-116.5978	1040	-0.09	Formación Alisitos sedimentaria
8.	RMX	Rumorosa	32.6025	-116.0786	1420		(Graníticas y Gabroides) (Tonalita)
	ZAX	El Zacatón	31.5137	-116.2730	947		Roca volcánica no diferenciada

 $M_L = \log(A) + 1.1319 \times \log_{10}(r/100) + 0.0017 \times (r - 100) + 3.0$ (3)

En estas relaciones r es la distancia hipocentral (en km). Se reporta magnitud coda para eventos con magnitud menor a 4.0 y magnitud local (Richter) para eventos con magnitud mayor.

Para corregir por efectos de, a las estimaciones de magnitud se les aplica una corrección de estación (Vidal y Munguía, 1999). Ver

Tabla 4.

En el caso de eventos fuertes, las lecturas de tiempos de arribo de otras redes o fuentes de información, locales y regionales, se usan en conjunto con los datos de RESNOM para determinar los parámetros hipocentrales. Es común integrar datos de Estaciones de la Red de acelerógrafos del Noroeste de México (RANM), una red de movimientos fuertes que opera el Departamento de Sismología de CICESE en la región norte de Baja California, la Red del Sur de California (SCSN), operada conjuntamente entre el Instituto Tecnológico de California (CALTECH) y el Servicio Geológico de Estados Unidos (USGS).

No	ID	Nombre Estación	Latitud	Longitud	Elevación	Corrección de	Asentamiento
					m		
						Magnitud	

	Estaciones de Banda Ancha											
				Estaciones d	e Banda Al	ncna						
23.	СВХ	Cerro Bola	32.3131	-116.6636	1250	-0.17	Rocas volcánicas no diferenciadas					
24.	ссх	CICESE	31.8679	-116.6645	36		Rocas volcánicas no diferenciadas Sobre base de concreto					
25.	СРХ	Cerro Prieto	32.4195	-115.3050	194	-0.42	Sedimentarias Continentales (Roca Magmática)					
26.	PIX	Pinacate	31.5629	113.4599	77		Sedimentarias Marinas					
27.	RMX	Rumorosa, BC	32.5535	116.0288	1278		(Graníticas y Gabroides) (Tonalita)					
28.	SPX	San Pedro Mártir	31.0451	-115.4660	2835	+0.22	Batolíticas Roca Sedimentaria Tonalita					
29.	SQX	San Quintín	30.5761	-115.875	101		Formación Alisitos Sedimentarias - volcánicas					
30.	TJX	Tijuana	32.5102	-117.0543	210		Roca Sedimentaria Marina					
31.	ткх	Tecate	32.5687	-116.6075	541		Roca Sedimentaria (Gabro)					
32.	UABX	UABC Mexicali	32.6316	-115.4447	44		Rocas Sedimentarias (Aluvión)					
33.	VTX	Valle de la Trinidad	31.3914	-115.7840	746		Roca Sedimentaria (Tonalita)					
				Estaciones de	e Periodo (Corto						
9.	СНХ	El Chinero	31.4721	-115.0521	40	+0.15	Rocas volcánicas (Andesita)					
10.	СРХ	Cerro Prieto	32.4195	-115.3050	194	-0.42	Sedimentarias Continentales (Roca Magmática)					
11.	ECX	Esteban Cantú	31.6570	-116.5978	1040	-0.09	Formación Alisitos sedimentaria					
12.	RMX	Rumorosa	32.6025	-116.0786	1420		(Graníticas y Gabroides) (Tonalita)					
	ZAX	El Zacatón	31.5137	-116.2730	947		Roca volcánica no diferenciada					

Tabla 4 – Factor de Corrección de Magnitud en las estaciones RESNOM.

Referencias

- [1] J. J., González and A. R. García. Escala de magnitud-coda para Estaciónes sismográficas en el Norte de Baja California, Resumen extenso en Memorias de la Reunión 1986 de la Unión Geofísica Mexicana, pp 399-406. 1986.
- [2] J., Havskov and L. Ottemöller. *SisAn: The earthquake Analysis Software, Versión 7.*0, Institute of Solid Earth Physics, University of Bergen, Norway, pp. 226. 1999.
- [3] B.R.E., Lienert and J. Havskov. *A computer program for locating earthquakes both locally and globally, Seism.* Res. Lett., 66, 19, 26-36. 1995.
- [4] G.A., McMechan and W. D. Mooney. Asymptotic ray theory and synthetic seismograms for laterally varying structures: theory and application to the Imperial Valley, California, Bull. Seism. Soc. Am., 70, 2021-20135, 1980.
- [5] F.A., Nava and J. Brune. *An Earthquake-Explosion reversed refraction line in the Peninsular Ranges of southern California an Baja California Norte*, Bull. Seism. Soc. Am., 72, 1195-1206. 1982.
- [6] A., Vidal and L. Munguía. *The ML scale in northern Baja California, México,* Bull. Seism. Soc. Am., 89, 3, 750-763. 1999.
- [7] A., Vidal and L. Orozco an S. Arregui and J. Sánchez and O. Gálvez and I. Méndez and L.Insunza. *A note on upgrading long period seismographs*, Geofísica International, 42, 1, 53-59, 2003.

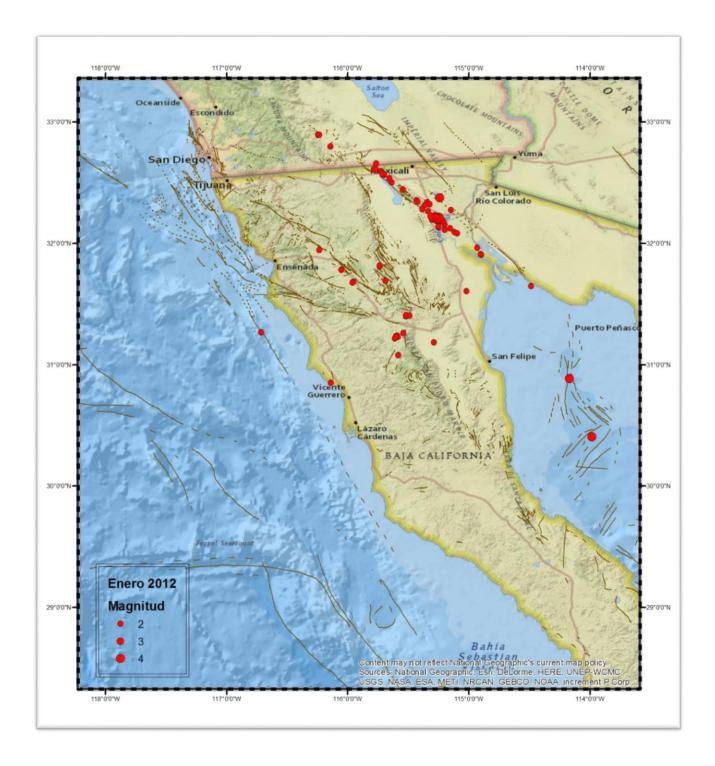
DESCRIPCIÓN DE LOS PARÁMETROS SISMOLÓGICOS

Parámetros	Descripción
Fecha / Hora	Fecha, Hora en UTC (Tiempo Universal Coordinado)
Latitud	Latitud del epicentro
Longitud	Longitud del epicentro
Р	Profundidad focal en kilómetros
n.°	Número de estaciones
RMS (Root-Mean-Square)	Medida de ajuste de los tiempos de llegada observados a los tiempos de llegada predichos en dicha localización
GAP	Perdida de información en segmento de datos.
Mag L	Magnitud Local (en color azul corresponde a Magnitud de Coda)
Ubicado	Distancia del poblado más cercano

Tabla 5 – Nomenclatura empleada en el resumen de los eventos localizados.

Fecha/	Hora	Latitud	Longitud	Р	n.°	RMS	GAP	Mag L	. Ubicación
01/02/2012	14:39:12	31.691	-115.688	6	12	0.2	130	2.2	a 36.32 km al norte del poblado de Valle de la Trinidad
01/02/2012	21:11:30	31.683	-115.954	5	12	0.3	91	2.7	a 40.94 km al noroeste del poblado de Valle de la Trinidad
01/03/2012	01:30:59	32.155	-115.2	10	14	0.2	116	2.7	a 8.54 km al sur del poblado de Alberto Oviedo Mota
01/03/2012	07:03:28	32.225	-115.249	8	9	0.3	180	2.2	a 7.44 km al oeste del poblado de Alberto Oviedo Mota
01/03/2012	18:00:28	31.397	-115.52	4	12	0.3	93	2.3	a 20.5 km al este del poblado de Valle de la Trinidad
01/04/2012	00:10:25	31.946	-116.235	6	8	0.2	99	2	a 37.12 km al este de la ciudad de Ensenada
01/04/2012	06:47:23	32.215	-115.305	5	15	0.2	92	2.6	a 12.77 km al oeste del poblado de Alberto Oviedo Mota
01/04/2012	09:47:42	31.407	-115.52	6	10	0.3	92	2.1	a 20.71 km al este del poblado de Valle de la Trinidad
01/04/2012	10:40:02	31.403	-115.49	6	12	0.3	97	2.2	a 23.42 km al este del poblado de Valle de la Trinidad
01/04/2012	10:57:37	31.26	-115.54	5	7	0.3	100	2	a 21.83 km al sureste del poblado de Valle de la Trinidad
01/04/2012	18:30:58	32.893	-116.243	5	10	0.2	101	2	a 52.69 km al noreste de la ciudad de Tecate
01/05/2012	13:04:40	31.675	-115.959	4	10	0.2	92	2	a 40.43 km al noroeste del poblado de Valle de la Trinidad
01/07/2012	08:42:11	31.267	-116.714	4	7	0.2	225	2.3	a 51.91 km al sur del poblado de Maneadero
01/07/2012	15:21:30	31.236	-115.603	4	6	0.2	115	2.2	a 19.06 km al sureste del poblado de Valle de la Trinidad
01/08/2012	09:20:00	32.194	-115.249	6	19	0.2	108	3.1	a 8.31 km al suroeste del poblado de Alberto Oviedo Mota
01/09/2012	05:42:08	30.852	-116.137	6	7	0.2	190	2	a 6.69 km al oeste del poblado de Camalú
01/09/2012	18:27:38	32.203	-115.259	5	11	0.2	139	2.3	a 8.8 km al oeste del poblado de Alberto Oviedo Mota
01/09/2012	23:52:20	32.339	-115.344	4	10	0.3	135	2.4	a 14.3 km al oeste del poblado de Delta
01/09/2012	23:59:26	31.185	-115.288	7	6	0.2	185	2.1	a 45.06 km al noroeste del poblado de San Felipe
01/10/2012	04:20:01	31.239	-115.591	5	6	0.2	112	2.1	a 19.58 km al sureste del poblado de Valle de la Trinidad
01/10/2012	05:51:11	32.183	-115.215	8	7	0.2	227	2.2	a 6.51 km al suroeste del poblado de Alberto Oviedo Mota
01/10/2012	09:01:15	32.193	-115.303	8	5	0.1	183	2	a 13.09 km al oeste del poblado de Alberto Oviedo Mota

Fecha/	Hora	Latitud	Longitud	Р	n.°	RMS	GAP	Mag L	- Ubicación
01/10/2012	11:45:29	31.817	-115.737	6	5	0.2	117	2.3	a 50.08 km al norte del poblado de Valle de la Trinidad
01/10/2012	11:55:14	32.5	-115.638	3	13	0.3	90	2.3	a 10.23 km al suroeste del poblado de Progreso
01/10/2012	22:57:34	32.179	-115.245	8	5	0.1	221	2.1	a 8.88 km al suroeste del poblado de Alberto Oviedo Mota
01/11/2012	10:58:11	32.186	-115.263	8	19	0.2	101	3	a 9.89 km al suroeste del poblado de Alberto Oviedo Mota
01/12/2012	06:36:21	32.263	-115.335	5	17	0.3	87	2.5	a 16.01 km al oeste del poblado de Alberto Oviedo Mota
01/12/2012	21:12:12	32.593	-115.726	3	13	0.3	133	2.3	a 13.38 km al oeste del poblado de Progreso
01/13/2012	09:06:41	32.537	-115.655	5	9	0.2	144	2	a 8.19 km al suroeste del poblado de Progreso
01/13/2012	11:42:18	31.963	-114.93	14	9	0.3	165	2.7	a 26.55 km al sur del poblado de Estación Coahuila
01/15/2012	01:15:45	32.894	-116.234	6	12	0.2	126	2	a 53.35 km al noreste de la ciudad de Tecate
01/15/2012	02:48:23	32.799	-116.142	6	13	0.2	98	2	a 53.55 km al noreste de la ciudad de Tecate
01/15/2012	05:50:40	32.613	-115.773	3	19	0.2	64	3.2	a 18.08 km al oeste del poblado de Progreso
01/15/2012	06:46:38	32.181	-115.254	9	11	0.3	167	2.3	a 9.44 km al suroeste del poblado de Alberto Oviedo Mota
01/15/2012	08:44:05	32.189	-115.264	10	22	0.2	77	2.7	a 9.83 km al suroeste del poblado de Alberto Oviedo Mota
01/16/2012	16:53:28	32.217	-115.257	8	8	0.2	200	2.3	a 8.27 km al oeste del poblado de Alberto Oviedo Mota
01/16/2012	18:14:54	31.78	-116.051	6	11	0.2	108	2.1	a 49.29 km al este del poblado de Maneadero
01/17/2012	18:50:10	31.216	-115.61	5	6	0.3	119	2.2	a 20.42 km al sureste del poblado de Valle de la Trinidad
01/17/2012	19:25:42	32.569	-115.703	4	16	0.2	103	2.5	a 11.22 km al oeste del poblado de Progreso
01/17/2012	19:26:03	32.58	-115.717	4	11	0.2	99	2.4	a 12.46 km al oeste del poblado de Progreso
01/17/2012	21:18:50	32.233	-115.28	5	17	0.2	98	2.5	a 10.36 km al oeste del poblado de Alberto Oviedo Mota
01/18/2012	01:55:26	32.568	-115.705	3	20	0.3	70	2.5	a 11.42 km al oeste del poblado de Progreso
01/18/2012	07:05:59	32.443	-115.543	5	21	0.3	80	2.6	a 15.71 km al sur del poblado de Progreso
01/18/2012	13:31:42	32.375	-115.239	3	23	0.3	97	4.3	a 4.86 km al noroeste del poblado de Delta



Fecha/Hora		Latitud	Longitud	Р	n.°	RMS	GAP	Mag L	- Ubicación
01/18/2012	23:26:38	31.607	-115.02	6	6	0.2	233	2	a 65.28 km al sur del poblado de Estación Coahuila
01/19/2012	01:23:52	32.09	-115.118	7	8	0.3	200	2.4	a 15.9 km al suroeste del poblado de Estación Coahuila
01/19/2012	01:31:19	32.082	-115.096	8	10	0.3	132	2.6	a 15.27 km al suroeste del poblado de Estación Coahuila
01/19/2012	01:38:55	30.887	-114.171	8	8	0.3	123	4	a 67.55 km al este del poblado de San Felipe
01/20/2012	01:43:16	32.221	-115.238	7	12	0.2	108	2.4	a 6.44 km al oeste del poblado de Alberto Oviedo Mota
01/20/2012	10:03:53	32.122	-115.154	10	16	0.2	123	2.9	a 11.83 km al sur del poblado de Alberto Oviedo Mota
01/20/2012	13:27:59	32.563	-115.698	4	16	0.2	70	2.8	a 10.85 km al oeste del poblado de Progreso
01/22/2012	00:39:47	30.406	-113.983	8	10	0.4	111	4.6	a 107.26 km al sureste del poblado de San Felipe
01/22/2012	03:52:54	32.274	-115.149	10	5	0.1	217	2.3	a 4.38 km al oeste del poblado de Guadalupe Victoria
01/23/2012	00:02:25	32.211	-115.285	8	6	0.2	162	2.4	a 10.97 km al oeste del poblado de Alberto Oviedo Mota
01/23/2012	01:05:43	32.191	-115.241	8	10	0.1	144	2.4	a 7.82 km al suroeste del poblado de Alberto Oviedo Mota
01/23/2012	15:30:22	32.323	-115.323	4	9	0.3	108	2.4	a 12.72 km al oeste del poblado de Delta
01/24/2012	10:25:41	31.905	-114.9	10	6	0.2	261	2.2	a 33.53 km al sur del poblado de Estación Coahuila
01/24/2012	10:36:13	31.91	-114.903	8	7	0.2	250	2.1	a 32.92 km al sur del poblado de Estación Coahuila
01/24/2012	16:38:37	31.647	-114.486	10	6	0.4	153	2.4	a 77.91 km al sureste del poblado de Estación Coahuila
01/25/2012	15:25:57	32.206	-115.293	7	5	0.3	157	2.2	a 11.82 km al oeste del poblado de Alberto Oviedo Mota
01/25/2012	19:04:01	32.567	-115.707	4	12	0.3	100	2.4	a 11.62 km al oeste del poblado de Progreso
01/25/2012	19:07:54	32.354	-115.431	5	9	0.2	128	2.4	a 22.36 km al oeste del poblado de Delta
01/25/2012	22:35:28	32.111	-115.2	10	6	0.2	185	2.4	a 13.26 km al sur del poblado de Alberto Oviedo Mota
01/26/2012	13:40:45	32.132	-115.251	12	6	0.2	164	2.2	a 13.07 km al suroeste del poblado de Alberto Oviedo Mota
01/26/2012	16:13:50	32.658	-115.763	3	17	0.1	65	2.3	a 18.87 km al noroeste del poblado de Progreso
01/27/2012	04:18:09	32.279	-115.385	4	6	0.3	221	2.1	a 19.92 km al suroeste del poblado de Delta

Fecha/Hora		Latitud	Longitud	Р	n.°	RMS	GAP	Mag L	_ Ubicación
01/27/2012	12:15:08	31.077	-115.584	5	5	0.2	124	2.1	a 35.18 km al sureste del poblado de Valle de la Trinidad
01/27/2012	22:37:40	31.228	-115.587	5	3	0.2	163	2.1	a 20.73 km al sureste del poblado de Valle de la Trinidad
01/28/2012	00:29:04	32.223	-115.311	8	19	0.2	135	3.4	a 13.27 km al oeste del poblado de Alberto Oviedo Mota
01/28/2012	21:00:05	32.139	-115.25	12	5	0.2	212	2	a 12.39 km al suroeste del poblado de Alberto Oviedo Mota
01/29/2012	04:01:44	32.316	-115.363	5	16	0.2	83	2.5	a 16.55 km al oeste del poblado de Delta
01/29/2012	11:09:24	32.207	-115.235	6	7	0.3	109	2.3	a 6.53 km al oeste del poblado de Alberto Oviedo Mota
01/29/2012	22:41:37	32.223	-115.272	6	12	0.3	169	2.4	a 9.61 km al oeste del poblado de Alberto Oviedo Mota
01/30/2012	23:21:27	32.343	-115.422	5	13	0.3	95	2.3	a 21.55 km al oeste del poblado de Delta
01/30/2012	23:38:24	31.232	-115.601	5	9	0.3	148	2.3	a 19.53 km al sureste del poblado de Valle de la Trinidad
01/31/2012	04:45:07	32.137	-115.26	7	13	0.2	98	2.4	a 13.15 km al suroeste del poblado de Alberto Oviedo Mota
01/31/2012	08:22:38	32.218	-115.278	7	10	0.2	166	2.2	a 10.21 km al oeste del poblado de Alberto Oviedo Mota
01/31/2012	09:11:18	32.307	-115.386	4	13	0.2	117	2.3	a 18.9 km al oeste del poblado de Delta
01/31/2012	09:55:07	31.846	-114.933	8	5	0.1	224	2	a 39.23 km al sur del poblado de Estación Coahuila
01/31/2012	19:54:11	32.175	-115.282	6	12	0.2	95	2.3	a 12.05 km al suroeste del poblado de Alberto Oviedo Mota

