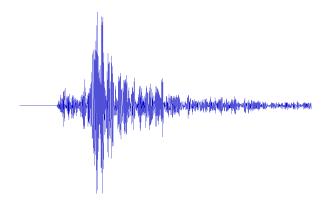


BOLETÍN DE INFORMACIÓN SÍSMICA

Enero 2014

GRUPO RESNOM


Departamento de Sismología

División de Ciencias de la Tierra

Centro de Investigación Científica y de Educación Superior de Ensenada, BC.

ÉPOCA II

Ensenada Baja - California, México

PERSONAL DE RESNOM

Investigador

Dr. Víctor M. Wong Ortega

Responsables del contenido y edición

Dr. Víctor M Wong Ortega

MTIC Julia del C Sánchez R.

Téc. Ignacio Méndez Figueroa

Téc. Francisco Javier Farfán S.

LCC. Sergio M. Arregui O.

M.C. Alejandra Núñez Leal

Grupo Técnico

Arregui Ojeda Sergio Manuel

Díaz de Cossio Batani Guillermo

Gálvez Valdez Jesús Óscar

Farfán Sánchez Francisco Javier

López Lara Alejandro

Méndez Figueroa Ignacio

Núñez Leal María Alejandra

Orozco León Luis Raúl

Sánchez Rodríguez Julia del Carmen

1 INFORMACIÓN GENERAL

La Red Sísmica del Noroeste de México (RESNOM) es una red telemétrica operada desde 1980 por el Departamento de Sismología, División de Ciencias de la Tierra, CICESE (Figura 1). La cual registra información digital de temblores locales y regionales del norte de Baja California y el oeste de Sonora (noroeste).

1.1 OBJETIVO DEL BOLETÍN

El Boletín de Información Sísmica tiene como objetivo difundir los resultados del procesado de las señales sísmicas registradas por RESNOM (Figura 1). Estas señales corresponden a temblores ocurridos en la región noroeste de México y el norte del Golfo de California.

El boletín consiste en listado de tiempos de origen, localizaciones hipocentrales, magnitud y algunos parámetros relativos a la localización de los sismos registrados (error cuadrático medio de los residuales de tiempo y número de lecturas utilizadas en la localización). Adicionalmente, se anexa mapa que muestra la distribución epicentral de los sismos localizados.

A continuación se presenta una breve descripción acerca de:

- La instrumentación de las estaciones.
- Los sistemas de adquisición de datos.
- El procesamiento de la Información
- Cálculo de la magnitud.

1.2 INSTRUMENTACIÓN DE LAS ESTACIONES

RESNOM consiste en 1 estación de Periodo Intermedio y 15 estaciones de Banda ancha (0.01-50 Hz), ver Tabla 1.

Las estaciones de Banda Ancha equipadas con grabadoras REFTEK modelo 130-1 de 6 componentes de 24 bits y sensores: a) de Velocidad marca GURALP modelo 3ESPC, b) de Aceleración marca Kinemetrics-Episensor modelo FBA ES-T y estaciones DAS 72A y sensores triaxiales Geotech (KS-2000. Las señales sísmicas se digitalizan a razón de 100 muestras por canal y se envían al CICESE utilizando el Internet comercial y en algunos casos satelital.

La estación de periodo intermedio (TLX) está equipada con digitalizador Reftek 130S y sensor de velocidad marca Guralp CMG-40T.

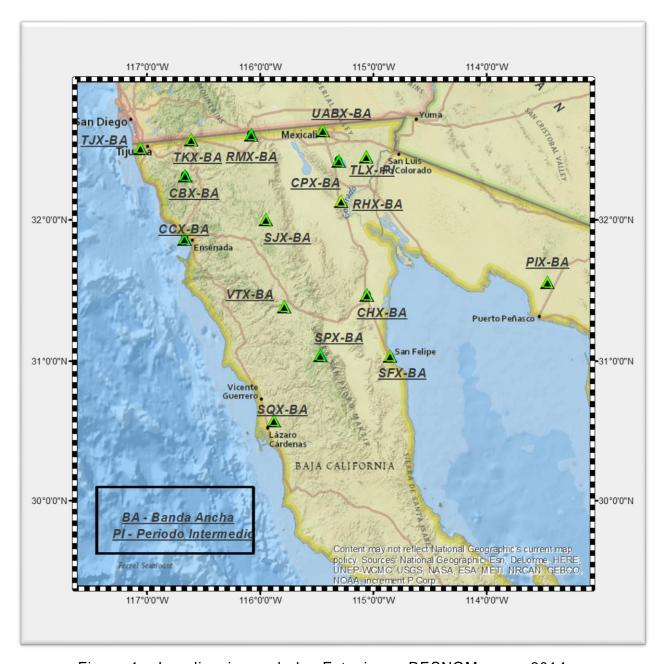


Figura 1 – Localizaciones de las Estaciones RESNOM enero 2014.

ID.	DAS	N/C	m/o	Volcoided	e/N	Apploración	C/N	Lotitud	Longitud	Elev	TIDO ENLACE	Comunicación	Identificación	Localización	Fecha	Fecha
10	DAS		111/5	Velocidad	3/11	Aceleración	3/11	Latituu	Longitud	m	TIFO ENLACE	Comunication	identinoacion	Localización	Instalación	Retiro

										Es	staciones (de Banda Ancha					
1.	СВХ	72 A-07	8129	100	GURALP CMG-40T	T4672			32.3131	-116.6636	1250	Radio-	Radio <i>⇔CICESE</i>	Radio <i>⇔CICESE</i> Cerro Bola		06-06-2001	
2.	ссх	REFTEK 130-1	В07Е	100	GURALP	T36760	FBA ES-T	4509	31.8679	-116.6645	36	Red CICESE	Red Interna CICESE	CICESE	Sótano del edificio de Ciencias de la Tierra - CICESE	26-06-2011	
3.	СНХ	DM24-3M		50	GURALP	T4034			31.4721	-115.0521	40	Radio-Internet	Radio <i>⇔</i> SPX <i>⇔CICESE</i>	Chinero	Cerro El Chinero BC	01-10-2012	
4.	СРХ	REFTEK 72 A DM24-3M REFTEK 130-1	B08E	100	MARK L4C GURALP CMG40T GURALP	T36761	FBA ES-T	4503	32.4195	-115.3050	194	Internet-VPN de C4	CPX ⇔C4 ⇔CICESE	Cerro Prieto	30 km al Sur de Mexicali – en el volcán de Cerro Prieto – BC	11-09-2001 29-10-2009 08-05-2012 ¹	20-10-2005 07-05-2012
5.	PIX	REFTEK 130-1	B07A	100	3ESPC GURALP 3ESPC	T36757	FBA ES-T	4508	31.5629	-113.4599	77	Internet Satelital	PIX ≠C4 ≠CICESE	Pinacate	Localidad del Pinacate – Sonora	15-07-2011	
6.	RHX	REFTEK 130-1	B081	100	GURALP 3ESPC	T36752	FBA ES-T	4504	32.1350	-115.2843	16	Internet Satelital	RHX⇔CICESE	Río Hardy		15-07-2013	
7.	RMX	REFTEK 130-1	B089	100	GURALP 3ESPC	T36756	FBA ES-T	4507	32.5535	-116.0288	1278	Internet	RMX⇔CICESE	Rumorosa	La Rumorosa – BC	11-11-2012	
8.	SFX	REFTEK 130-1	B089	100	GURALP 3ESPC	Т36756	FBA ES-T	4507	31.0376	-114.8510	39	Internet	SFX ⇔ CICESE	San Felipe	San Felipe – BC	07-06-2012	
9.	SJX	REFTEK 130-1	B085	100	GURALP 3ESPC	T36755	FBA ES-T	4498	32.0048	-115.9480	1616	Internet Satelital	SJX ⇔ CICESE	Sierra Juárez	Sierra Juárez – BC	22-03-2012	
	68.4	REFTEK 72 A		100	GEOTECH KS-2000				24 0	445	202-		GEV -deleter	Garage and and a	Observatorio de San Pedro Mártir	29-05-2001	25-05-2011
10.	SPX	REFTEK 130-1	B083	100	GURALP 3ESPC	T36759	FBA ES-T	4499	31.0451	-115.4660	2835	Internet	SFX ⇔ CICESE	San Pedro Mártir	– BC (170 km al sureste de la ciudad de Ensenada – BC)	26-06-2011	

¹ Cambian los instrumentos de Banda Ancha

	ID	DAS	N/S	m/s	Velocidad	S/N	Aceleración	S/N	Latitud	Longitud	Elev m	TIPO ENLACE	Comunicación	Identificación	Localización	Fecha Instalación	Fecha Retiro
11.	sqx	REFTEK 130-1	В08С	100	GURALP 3ESPC	T36758	FBA ES-T	4506	30.5761	-115.875	101	Internet Satelital	SQX ≠ CICESE	San Quintín	San Quintín - BC	08-12-2011	
12.	TJX	REFTEK 130-1	В077	100	GURALP 3ESPC	T36750	FBA ES-T	4511	32.5102	-117.0543	210	Internet	TJX⇔CICESE	Tijuana	Protección Civil en la cd. De Tijuana – BC	17-11-2011	
13.	ткх	REFTEK 130-1	B08B	100	GURALP 3ESPC	T36749	FBA ES-T	4505	32.5687	-116.6075	541	Internet	TKX ⇔C4 ⇔CICESE	Tecate	Edificio C4 de la ciudad de Tecate	30-11-2011	
14.	TLX	REFTEK 130S	B912		GURALP CMG-40T	T4W97			32.4480	-115.0587		Internet	TLX⇔CICESE	Tlaxcala	Ejido Tlaxcala – Mexicali – BC	03-05-2013	
15.	UABX	REFTEK 130-1	B082	100	GURALP 3ESPC	T36753	FBA ES-T	4510	32.6316	-115.4447	44	Internet	UABX⇔CICESE	UABC Mexicali	Edificio de Ingeniería – Mexicali de la UABC	06-07-2011	
16.	VTX	REFTEK 130-1	B08A	100	GURALP 3ESPC	T36705	FBA ES-T	4512	31.3914	-115.7840	746	Internet Satelital	VTX⇔CICESE	Valle de la Trinidad	Valle de la Trinidad – BC	11-11-2011	

Tabla 1- Información de las estaciones de RESNOM enero - 2014.

1.3 ADQUISICIÓN DE DATOS

Las señales digitalizadas se transmiten de forma continua en tiempo real al CICESE utilizando Internet convencional e Internet satelital. En el centro de datos de RESNOM se reciben las señales y se procesan automáticamente en formato digital para realizar las detecciones de los eventos sísmicos, el cálculo de las localizaciones hipocentrales y las magnitudes. Ya procesadas las señales se incorporan en una base de datos de eventos y el continuo de la señal registrada.

1.4 PROCESAMIENTO DE LA INFORMACIÓN

Tras el arribo de las señales sísmicas al centro de datos de RESNOM, se analizan y procesan a través del sistema Earthworm: la detección automática de sismos, el cálculo de tiempos de arribo, la localización de epicentros y el cálculo de las magnitudes. Además, se utilizan los registros para calcular mecanismos focales, así como el cálculo de las aceleraciones máximas para generar los mapas de intensidades. Este proceso se realiza de manera automática, sin la intervención de un técnico analista de datos. Posteriormente, esta información, en la etapa de posproceso es revisada por un analista y en caso de ser necesario, se vuelven a procesar los registros del sismo.

1.5 CÁLCULO HIPOCENTRAL AUTOMATIZADO

Estos se realizan a través de un sistema de código abierto conocido como Earthworm (EW), el que fue desarrollado por el USGS (*United States Geological Survey*) y actualmente es soportado por ISTI (*Instrumental Software Technologies, Inc.*) a través del Sistema AQM (ANSS Quake Monitoring System).

La precisión de los resultados hipocentrales depende del número de estaciones sismológicas empleadas en el análisis (mínimo 4), la disponibilidad y calidad de las señales que se registraron.

1.6 CÁLCULO DE MAGNITUD AUTOMATIZADO

El cálculo se encuentra basado en dos programas: Hypoinverse y Binder; siendo el primero el encargado además de estimar la magnitud de duración (Md) empleando el promedio de las CODAS (duración) con la ecuación de Eaton (1992).

Tras unos minutos de haber ocurrido el sismo, se cuenta con un mayor número de datos sísmicos. Un analista experimentado analiza la información recibida, para con ella obtener una nueva estimación de magnitud.

Al ya contar con la mayoría de los datos y más tiempo de procesamiento, se realiza una nueva estimación de la magnitud, y se reporta la magnitud final del evento.

1.7 CÁLCULO DE MAGNITUD MANUAL

Los cálculos manuales de los eventos sísmicos son realizados empleando el programa SEISAN paquete sismológico de código abierto escrito y desarrollado por Jens Havskov, Lars Ottemöller y Peter Voss. Debido a que el procesamiento manual (identificación de fases P y S; cálculo hipocentral y estimación de magnitud) de la señal sismológica es realizada con la mayor cantidad de estaciones disponibles, evaluando su calidad y la mejor cobertura azimutal alrededor de la fuente sísmica.

En el caso de eventos fuertes, las lecturas de tiempos de arribo de otras redes o fuentes de información, locales y regionales, se usan en conjunto con los datos de RESNOM para determinar los parámetros hipocentrales Es común la integración de datos de estaciones de la Red de acelerógrafos del Noroeste de México (RANM), una red de movimientos fuertes que opera el Departamento de Sismología de CICESE en la región norte de Baja California, o lecturas de tiempos de la Red del Sur de California (SCSN), operada conjuntamente entre el Instituto Tecnológico de California (CALTECH) y el Servicio Geológico

No	ID	Nombre Estación	Latitud	Longitud	Elevación	Corrección de	Asentamiento
					m		
						Magnitud	

				Estaciones d	e Banda Anc	ha	
1.	СВХ	Cerro Bola	32.3131	-116.6636	1250	-0.17	Rocas volcánicas no diferenciadas
2.	ссх	CICESE	31.8679	-116.6645	36		Rocas volcánicas no diferenciadas Sobre base de concreto
3.	СНХ	El Chinero, BC.	31.4721	115.0521	40		Rocas volcánicas (Andesita)
4.	СРХ	Cerro Prieto	32.4195	-115.3050	194	-0.42	Sedimentarias Continentales (Roca Magmática)
5.	PIX	Pinacate	31.5629	113.4599	77		Sedimentarias Marinas
6.	RHX	Río Hardy	32.1350	115.2843	16		Rocas Sedimentarias (Aluvión)
7.	RMX	Rumorosa, BC	32.5535	116.0288	1278		(Graníticas y Gabroides) (Tonalita)
8.	SFX	San Felipe	31.0376	-114.8510	39		Rocas Sedimentarias Continentales
9.	SJX	Sierra de Juárez	32.0048	-115.9480	1616		(Granodiorita)
10.	SPX	San Pedro Mártir	31.0451	-115.4660	2835	+0.22	Batolíticas Roca Sedimentaria Tonalita
11.	sqx	San Quintín	30.5761	-115.875	101		Formación Alisitos Sedimentarias - volcánicas
12.	XLT	Tijuana	32.5102	-117.0543	210		Roca Sedimentaria Marina
13.	ТКХ	Tecate	32.5687	-116.6075	541		Roca Sedimentaria (Gabro)
14.	TLX	Tlaxcala	32.4480	-115.0587			Rocas Sedimentarias (Aluvión)
15.	UABX	UABC Mexicali	32.6316	-115.4447	44		Rocas Sedimentarias (Aluvión)
16.	VTX	Valle de la Trinidad	31.3914	-115.7840	746		Roca Sedimentaria (Tonalita)

Tabla 2 – Tipo de asentamiento de las estaciones de RESNOM.

	Modelo de Velocidades Sísmicas													
Macizo (²			Mexicali	<u>Bal</u>	<u>nía</u>	Golfo (Golfo Sur (²)						
Profundidad km	Velocidad km/s	Profundidad km	Velocidad km/s	Profundidad km	Velocidad km/s	Profundidad km	Velocidad km/s	Profundidad km	Velocidad km/s					
0.0	5.6	0.0	1.7	0.0	1.96	0.0	5.0	0.0	4.0					
5.0	6.6	0.10	2.0	2.0	4.60	4.0	6.0	2.0	6.0					
20.0	7.0	0.73	2.3	8.0	5.52	12.0	6.4	7.0	6.40					
42.0	8.0	1.75	2.6	19.0	6.66	19.0	6.6	14.0	6.90					
		2.94	3.0	24.0	7.90	26.0	6.8	24.0	7.60					
		5.62	5.0	55.0	8.30			80.0	8.0					
		10.0	6.1											
		20.0	7.8											
		30.0	8.0											

Tabla 3 - Modelo de Velocidades Sísmicas

Nava, F. A. y J. N. Brune (1982). An Earthquake-Explosion reversed refraction line in the Peninsular Ranges of southern California and Baja California Norte. Bull. Seism. Soc. Am., 72, 1195-1206. (Macizo Rocoso - Valle de Mexicali -)

Rebecca J. Dorsey (U. Oregon), Paul J. Umhoefer (N. Arizona State U.), Michael E. Oskin (U. California, Davis) and Ramon Arrowsmith (Arizona State Univ.). Rupturing Continental Lithosphere in the Gulf of California & Salton Trough. GeoPRIMS Newsletter, Issue No. 30, Spring 2013. (Golfo Centro)

Referencias

- [1] J. J., González and A. R. García. Escala de magnitud-coda para estaciones sismográficas en el Norte de Baja California, Resumen extenso en Memorias de la Reunión 1986 de la Unión Geofísica Mexicana, pp 399-406. 1986.
- [2] J., Havskov and L. Ottemöller. SisAn: The earthquake Analysis Software, Versión 7.0, Institute of Solid Earth Physics, University of Bergen, Norway, pp. 226. 1999.
- [3] B.R.E., Lienert and J. Havskov. *A computer program for locating earthquakes both locally and globally, Seism.* Res. Lett., 66, 19, 26-36. 1995.
- [4] G.A., McMechan and W. D. Mooney. Asymptotic ray theory and synthetic seismograms for laterally varying structures: theory and application to the Imperial Valley, California, Bull. Seism. Soc. Am., 70, 2021-20135, 1980.
- [5] F.A., Nava and J. Brune. *An Earthquake-Explosion reversed refraction line in the Peninsular Ranges of southern California an Baja California Norte*, Bull. Seism. Soc. Am., 72, 1195-1206. 1982.
- [6] A., Vidal and L. Munguía. *The ML scale in northern Baja California, México,* Bull. Seism. Soc. Am., 89, 3, 750-763. 1999.
- [7] A., Vidal and L. Orozco and S. Arregui and J. Sánchez and O. Gálvez and I. Méndez and L.Insunza. *A note on upgrading long period seismographs,* Geofísica International, 42, 1, 53-59, 2003.

DESCRIPCIÓN DE LOS PARÁMETROS SISMOLÓGICO

Parámetros	Descripción
Fecha / Hora	Fecha, Hora en UTC (Tiempo Universal Coordinado)
Latitud	Latitud del epicentro
Longitud	Longitud del epicentro
Р	Profundidad focal en kilómetros
n.°	Número de estaciones
RMS (Root-Mean-Square)	Medida de ajuste de los tiempos de llegada observados a los tiempos de llegada predichos en dicha localización
GAP	Perdida de información en segmento de datos
Mag L	Magnitud Local (en color azul corresponde a Magnitud de coda
Ubicado	Distancia del poblado más cercano

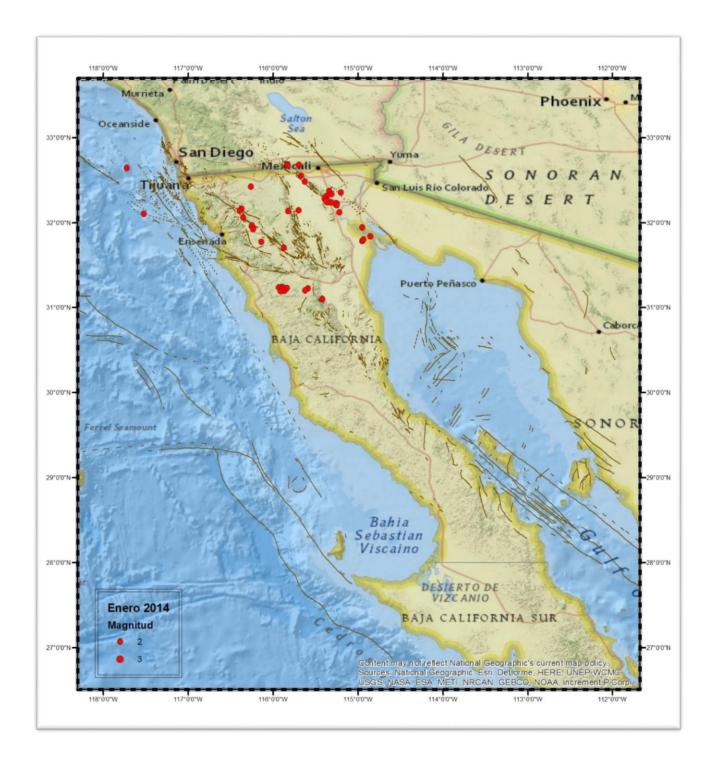
Tabla 4 – Nomenclatura empleada en el resumen de los eventos localizados.

Eventos enero 2014

Fecha/	Hora	Latitud	Longitud	Р	No.	RMS	GAP	Mag	L Ubicado
01/01/2014	03:48:19	31.233	-115.918	5	7	0.3	153	2	a 23.01 km al suroeste del poblado de Valle de la Trinidad
01/02/2014	04:31:21	32.162	-116.37	8	18	0.3	81	2.9	a 40.25 km al noreste de la ciudad de Ensenada
01/03/2014	01:53:57	32.315	-115.369	5	7	0.2	99	2.1	a 17.12 km al oeste del poblado de Delta
01/03/2014	12:52:43	31.924	-116.233	5	15	0.3	117	2.1	a 36.81 km al este de la ciudad de Ensenada
01/06/2014	14:35:30	32.144	-115.699	5	8	0.3	126	2.1	a 49.67 km al sur del poblado de Progreso
01/06/2014	15:18:19	31.959	-116.252	5	19	0.3	89	2.5	a 35.95 km al este de la ciudad de Ensenada
01/07/2014	06:00:28	31.968	-116.244	5	11	0.2	88	2.2	a 36.96 km al este de la ciudad de Ensenada
01/07/2014	08:15:04	31.203	-115.867	2	9	0.3	134	2.3	a 22.2 km al suroeste del poblado de Valle de la Trinidad
01/07/2014	09:28:44	32.481	-115.624	13	7	0.2	116	2	a 11.63 km al sur del poblado de Progreso
01/07/2014	11:59:59	31.837	-114.854	20	6	0.2	231	2.5	a 42.07 km al sur del poblado de Estación Coahuila
01/07/2014	17:26:56	31.218	-115.872	8	5	0	175	2.2	a 21.15 km al suroeste del poblado de Valle de la Trinidad
01/08/2014	02:05:09	31.219	-115.884	5	8	0.3	149	2.5	a 21.8 km al suroeste del poblado de Valle de la Trinidad
01/08/2014	07:03:30	32.684	-115.833	6	11	0.3	89	2	a 26.03 km al noroeste del poblado de Progreso
01/08/2014	12:30:21	31.223	-115.871	5	6	0.2	175	2.1	a 20.66 km al suroeste del poblado de Valle de la Trinidad
01/08/2014	15:41:00	32.279	-115.392	5	20	0.3	93	2.8	a 20.52 km al suroeste del poblado de Delta
01/08/2014	16:24:54	31.783	-114.948	11	7	0.3	213	2.8	a 45.97 km al sur del poblado de Estación Coahuila
01/08/2014	17:54:32	31.8	-114.933	6	6	0.3	216	2.3	a 44.28 km al sur del poblado de Estación Coahuila
01/09/2014	05:43:24	31.104	-115.421	7	6	0.3	124	2	a 41.62 km al sureste del poblado de Valle de la Trinidad
01/09/2014	10:13:02	31.226	-115.88	5	7	0.2	149	2.3	a 20.96 km al suroeste del poblado de Valle de la Trinidad
01/09/2014	13:33:25	31.224	-115.889	5	6	0.2	177	2.1	a 21.7 km al suroeste del poblado de Valle de la Trinidad

Eventos enero 2014

Fecha/	Hora	Latitud	Longitud	Р	No.	RMS	GAP	Mag	L Ubicado
01/09/2014	13:35:47	31.226	-115.897	5	7	0.2	151	2	a 22.07 km al suroeste del poblado de Valle de la Trinidad
01/09/2014	13:37:28	31.223	-115.88	5	7	0.3	149	2	a 21.21 km al suroeste del poblado de Valle de la Trinidad
01/09/2014	18:10:32	31.226	-115.884	5	10	0.2	149	2.5	a 21.22 km al suroeste del poblado de Valle de la Trinidad
01/10/2014	00:26:30	32.678	-115.693	6	17	0.3	74	2.1	a 14.93 km al noroeste del poblado de Progreso
01/10/2014	01:37:49	32.105	-117.521	10	7	0.2	322	2.2	a 52.46 km al suroeste de la ciudad de Rosarito
01/10/2014	11:59:52	31.217	-115.884	5	13	0.3	135	3.4	a 21.97 km al suroeste del poblado de Valle de la Trinidad
01/10/2014	12:30:16	31.927	-116.233	6	17	0.3	117	2.7	a 36.86 km al este de la ciudad de Ensenada
01/10/2014	16:47:42	32.223	-115.256	5	18	0.3	138	3	a 8.1 km al oeste del poblado de Alberto Oviedo Mota
01/11/2014	02:59:39	32.64	-117.723	3	11	26.5	321	2.4	a 72.02 km al oeste de la ciudad de Tijuana
01/11/2014	13:37:03	31.235	-115.888	0	19	1.2	135	3.8	a 20.76 km al suroeste del poblado de Valle de la Trinidad
01/11/2014	14:22:22	31.206	-115.865	0	17	0.7	146	3.3	a 21.82 km al suroeste del poblado de Valle de la Trinidad
01/12/2014	01:25:35	28.546	-119.142	10	16	6.1	333	3.9	a 376.52 km al suroeste del poblado de San Quintín
01/12/2014	13:10:19	31.232	-115.835	5	6	0.2	170	2	a 17.83 km al suroeste del poblado de Valle de la Trinidad
01/14/2014	01:03:08	32.674	-115.825	3	21	0.3	46	2.7	a 24.87 km al noroeste del poblado de Progreso
01/14/2014	01:56:42	31.944	-114.95	12	12	0.3	229	2.6	a 28.21 km al sur del poblado de Estación Coahuila
01/14/2014	02:27:30	31.235	-115.93	5	11	0.3	139	2.9	a 23.76 km al suroeste del poblado de Valle de la Trinidad
01/17/2014	14:00:42	32.238	-115.356	14	9	0.3	150	2.6	a 17.53 km al oeste del poblado de Alberto Oviedo Mota
01/17/2014	18:16:58	32.252	-115.363	0	14	0.4	103	3	a 18.35 km al oeste del poblado de Alberto Oviedo Mota
01/20/2014	05:56:20	31.226	-115.586	6	5	0.1	113	2.1	a 20.96 km al sureste del poblado de Valle de la Trinidad
01/20/2014	22:02:51	32.552	-115.672	5	15	0.2	155	2.1	a 8.81 km al oeste del poblado de Progreso



Eventos enero 2014

Fecha/	Hora	Latitud	Longitud	Р	No.	RMS	GAP	Mag	L Ubicado
01/21/2014	16:02:05	31.204	-115.621	5	7	0.2	123	2	a 20.98 km al sureste del poblado de Valle de la Trinidad
01/22/2014	10:07:47	32.12	-115.22	8	12	0.2	151	2.2	a 12.85 km al sur del poblado de Alberto Oviedo Mota
01/22/2014	21:42:06	32.064	-116.35	6	12	0.2	116	2.2	a 33.4 km al noreste de la ciudad de Ensenada
01/23/2014	22:36:56	32.203	-115.248	5	11	0.2	179	2.2	a 7.83 km al oeste del poblado de Alberto Oviedo Mota
01/24/2014	16:10:43	31.196	-115.909	5	12	0.2	117	2.1	a 25.29 km al suroeste del poblado de Valle de la Trinidad
01/24/2014	17:05:22	32.425	-116.258	8	13	0.2	94	2.3	a 37.74 km al este de la ciudad de Tecate
01/24/2014	20:31:13	32.138	-116.39	8	14	0.3	187	2.2	a 36.99 km al noreste de la ciudad de Ensenada
01/24/2014	21:46:51	32.234	-115.316	5	10	0.2	160	2.2	a 13.75 km al oeste del poblado de Alberto Oviedo Mota
01/28/2014	16:27:56	31.704	-115.869	8	14	0.2	91	2.4	a 39.67 km al norte del poblado de Valle de la Trinidad
01/28/2014	19:31:29	32.354	-115.198	9	14	0.3	120	2.7	a 0.48 km al oeste del poblado de Delta
01/29/2014	02:00:23	32.134	-115.822	6	15	0.2	107	2.1	a 54.4 km al suroeste del poblado de Progreso
01/29/2014	08:04:43	31.773	-116.134	7	10	0.3	140	2.2	a 41.42 km al este del poblado de Maneadero
01/30/2014	17:39:32	32.372	-115.337	10	4	0	133	2.5	a 13.66 km al oeste del poblado de Delta
01/30/2014	18:15:06	32.335	-115.308	7	4	0.1	163	2.5	a 11.03 km al oeste del poblado de Delta

Mapa eventos enero 2014

