
Reporte de Sismos Registrados por la Red de Acelerógrafos del Noroeste de México Durante el Año 2015

Manuel Luna, Luis Munguía y Miguel Navarro

Departamento de Sismología División de Ciencias de la Tierra

CICESE

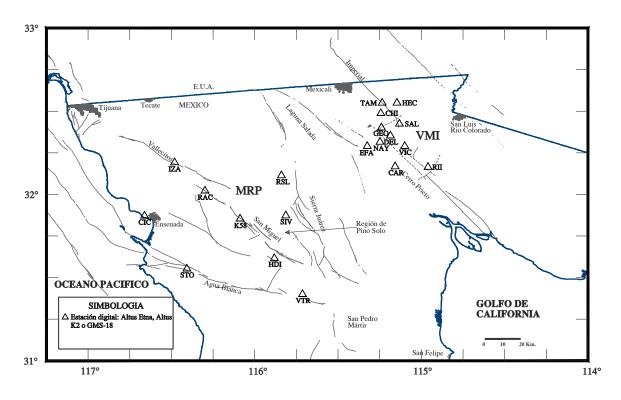
Registrado el: 22/08/16

ID: 20822

INDICE

	Resumen	Ш
	Introducción	۱۱
1	Información general acerca de la Red de Acelerógrafos del Noroeste de México	-
2	Instrumentación	2
	2.1 Memoria Pre-evento y Pos-evento	2
	2.2 Sincronización del tiempo de los instrumentos	(
	2.3 Orientación de los sensores	3
	2.4 Cambios en la instrumentación	2
	2.5 Características de las estaciones	2
3	Mantenimiento de la red y recolección de los datos	6
4	Procesamiento de los datos	6
	4.1 Nomenclatura utilizada con los archivos del Volumen I (V1)	-
5	Almacenamiento de la información	(
	5.1 Nomenclatura de los archivos comprimidos en los que se agrupan los datos por	
	evento	(
6		1(
7		19
8		19
9	Agradecimientos	19
0		2(
11	Apéndices	
	A Encabezado de los archivos de las series de tiempo procesadas (V1) A	۱.
	B Cronología de la instrumentación de la red durante el año 2015 B	3.1

Resumen


El presente reporte de datos de aceleración se elaboró con la finalidad de dar a conocer los resultados del funcionamiento de la Red de Acelerógrafos del Noroeste de México durante el año 2015. Los registros de aceleración del presente año, fueron obtenidos con equipos digitales con resoluciones de 18 y 24 bits, fabricados por las compañías *Kinemetrics* y *GeoSIG*. Durante el año se obtuvieron 115 registros de aceleración de 3 componentes cada uno, corregidos por la sensibilidad del instrumento (Volumen I), que corresponden a 67 sismos registrados. La obtención del Volumen I de los datos fue realizada con los programas *K2* y GMS. De los 67 sismos registrados sólo fue posible obtener la localización de 42 de ellos, de los cuales 11 fueron ubicados en la región del Macizo Rocoso Peninsular y 31 en el Valle de Mexicali. Respecto a las magnitudes de los sismos localizados, éstas estuvieron comprendidas en un intervalo de 2.1 a 5.2. La aceleración máxima absoluta registrada durante el año 2015 fue de 108 gales, registrada en la estación GEO. Los archivos que contienen el Volumen I de los datos de aceleración son archivos tipo texto (ASCII) organizados de acuerdo al *Formato Estándar de la Base Mexicana de Datos de Sismos Fuertes* (versión 2.0). Estos archivos fueron agrupados y comprimidos por evento, organizados por año, mes y día y están almacenados en discos ópticos reescribibles (DVD).

Introducción

Con el propósito de registrar los movimientos fuertes causados por sismos relevantes de la región norte de Baja California, durante los últimos 39 años ha estado en funcionamiento la Red de Acelerógrafos del Noroeste de México (RANM). La finalidad del presente reporte es dar a conocer los aspectos más relevantes y generales del funcionamiento de la red y de la información registrada por ésta durante el año 2015. Para ello, el reporte se encuentra dividido en seis partes principales: La primera parte, "Información general acerca de la red", ubica al lector dentro del marco de alcance comprendido por esta red, así como de su organización. La segunda parte, "Instrumentación", describe algunos aspectos importantes en cuanto a la forma de adquisición de los datos, el tipo de instrumentos que forman la red y algunas de sus características generales de funcionamiento. En la tercera parte, "Mantenimiento de la red y recolección de los datos", se describe el procedimiento general de revisión que se realiza a cada una de las estaciones, para el buen funcionamiento de éstas. En la cuarta parte, "Procesamiento de los datos", se describe tanto la secuencia utilizada en el procesamiento de los datos, como la nomenclatura para asignarle un identificador único a cada archivo de registro. En la quinta parte, "Almacenamiento de la información", se indica la nomenclatura para la asignación de los nombres de cada uno de los archivos comprimidos por evento, así como de su contenido. Finalmente, en la última parte, "Sismos registrados", se presenta un mapa con la localización de los epicentros de los sismos registrados y localizados en el período y se realiza un análisis descriptivo sencillo de las características de estos sismos. Adicionalmente, se presenta una tabla con las coordenadas y las magnitudes de los sismos localizados, así como las aceleraciones máximas, por canal, para cada uno de los sismos registrados en las diferentes estaciones acelerográficas.

1. Información general acerca de la Red de Acelerógrafos del Noroeste de México

La distribución geográfica actual de las estaciones que conforman a RANM abarca principalmente la región norte del estado de Baja California y la parte noroccidental del estado de Sonora. La mayor densidad de estaciones se encuentra a lo largo del sistema de fallas Imperial-Cerro Prieto, debido a que este sistema genera con mayor frecuencia los sismos más fuertes de la región, (algunos ejemplos son: el sismo del Valle Imperial del 15 de octubre de 1979 [M = 6.6], el sismo de Victoria del 9 de junio de 1980 [M = 6.1] y el sismo El Mayor-Cucapah del 4 de abril de 2010 [M = 7.2]). Otros sistemas con potencial para generar sismos de intensidad moderada a fuerte son el formado por las fallas San Miguel-Vallecitos, Sierra Juárez y la región de Pino Solo, ubicados en la región del Macizo Rocoso Peninsular (MRP), además de la falla Laguna Salada, ubicada en la región oeste del Valle de Mexicali-Imperial (VMI). La distribución geográfica de las estaciones de la red, durante el año 2015, puede observarse en la Figura 1.

Figura 1. Distribución geográfica de las estaciones de la Red de Acelerógrafos del Noroeste de México. Las abreviaturas **MRP** y **VMI** indican las regiones del Macizo Rocoso Peninsular y del Valle Mexicali-Imperial, respectivamente.

2. Instrumentación

Durante el año 2015 la red funcionó con 20 instrumentos de tipo digital (3 *ALTUS-ETNA*, 5 *ALTUS-K2*, 11 *GMS-18 y 1 130-SMA*). Los equipos *ALTUS-ETNA* y *ALTUS-K2*, fueron fabricados por la compañía *Kinemetrics*, mientras que los instrumentos *GMS-18* los fabricó la compañía *GeoSig* y el instrumento *130-SMA* la compañía *Ref Tek*. Las características de todos los instrumentos fueron ya descritas en los catálogos previos al presente por Vidal et al. (1996), Luna *et al.* (2010) y, Luna *et al.* (2012), por lo que se sugiere revisar las referencias anteriores para una descripción general de algunas de las características más sobresalientes de los instrumentos mencionados.

2. 1 Memoria Pre-evento y Pos-evento

Durante el presente año, el instrumento digital *130-SMA* operó con una memoria preevento de 30.0 s, los instrumentos *GMS-18* también operaron con 30.0 s, y los instrumentos *Altus-ETNA* y *Altus-K2*, aunque trabajaron con una memoria pre-evento inicial de 30.00 s, sus registros reciben, en su caso, un ajuste que incrementa este tiempo. Este ajuste se realiza sumándole al tiempo pre-evento inicial, las décimas de segundo del tiempo de disparo del instrumento. De esta forma, el tiempo de pre-evento efectivo es igual ó mayor al de los 30.00 s definidos inicialmente en el instrumento (ver Figura 2).

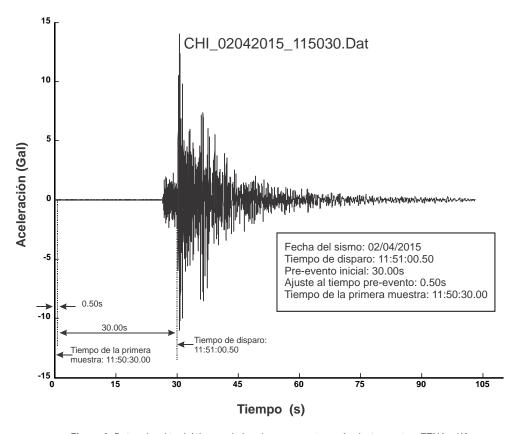


Figura 2. Determinación del tiempo de la primera muestra en los instrumentos ETNA y K2.

Por otro lado, los instrumentos operaron con la siguiente memoria post-evento: 90.0 s para el *130-SMA*; 60.0 s para los *ETNA* y los *K2* y 90.0 s para los *GMS-18*. Estos parámetros se han elegido de acuerdo a la experiencia adquirida en la operación de los equipos y aseguran el registro apropiado de la señal sísmica, tanto de los primeros arribos como de la longitud de la señal. Un resumen de los tiempos pre-evento y pos-evento de los instrumentos que conformaron la red durante el año 2015, se presenta en la Tabla 1.

Tabla 1. Tiempos pre-evento y post-evento de los equipos de la red en el año 2015.

Instrumento	Pre-evento	Post-evento
130-SMA	30.0 s	90.0 s
Altus-ETNA	30.0 s	60.0 s
Altus-K2	30.0 s	60.0 s
GMS-18	30.0 s	90.0 s

2.2 Sincronización del tiempo de los instrumentos

Actualmente todos los instrumentos que conforman la red (RANM), cuentan con un sistema de sincronización automática de su tiempo interno por medio de un GPS que forma parte del mismo acelerógrafo.

2.3 Orientación de los sensores

Todos los instrumentos *Altus* con sensores *FBA*, siguen el orden Norte-Sur, vertical y Este-Oeste, para los canales 1, 2 y 3 respectivamente, (ver Tabla 2).

Los instrumentos *Altus* con sensores *Episensor*, siguen el orden Este-Oeste, Norte-Sur y vertical para los mismos canales 1, 2 y 3, en este orden.

En los instrumentos *GMS-18* con sensores *AC-63*, el canal Norte-Sur, está identificado con el número de canal 1, el canal Este-Oeste con el canal número 2 y el vertical con el canal 3.

En cuanto al instrumento *130-SMA*, se tiene el siguiente orden: El canal nùmero 1 está orientado verticalmente, el canal 2 está orientado hacia el Este-Oeste y el canal 3 hacia el Norte-Sur.

2.4 Cambios en la instrumentación

A finales del año 2015 se retiraron, ya sea por malfuncionamiento del equipo o por conveniencia en la distribución de éste en la red, los instrumentos de las siguientes cuatro estaciones: IZA (130-SMA, n/s AE03), SIV (GMS-18, n/s 100205), VTR (Altus-Etna, n/s 168) y RII (GMS-18, n/s 100199). Las primeras tres estaciones pertenecen a la región del MRP en tanto que la última pertenece a la región del VMI.

2.5 Características de las estaciones

La información concerniente a las estaciones de la red se presenta en la Tabla 2. En esta Tabla se incluye el nombre y código de las estaciones, sus coordenadas geográficas, el nombre y la orientación de las tres componentes, el tipo y número de serie del instrumento instalado y algunas otras características, tales como: la frecuencia natural, el amortiguamiento y la sensibilidad de los acelerómetros. Los datos anotados en la Tabla corresponden a la instrumentación instalada a finales de 2015. Los cambios hechos en la instrumentación de cada estación durante el período enero-diciembre del año 2015, se pueden consultar en la cronología de la instrumentación de la red, listada en el Apéndice B de este documento.

Tabla 2. Red de Acelerógrafos del Noroeste de México a diciembre del año 2015.

Estación	gr	nadas en ados Lon.(0)	Comp.	Or.1	Sen.	Frec. (Hz)	Am. ²	Inst.	No. Serie
CARRANCITAS	32.1670		E-O	90	2.50	204.00	0.70	ALTUS-K2/	1580
(CAR)	32.10/0	115.1590	N-S	0		204.00	0.70	Episensor-	1360
(CAR)			Vert	+		206.00	0.70	interno	
			AELC	т.	2.50	200.00	0.70	Incerno	
CHIHUAHUA	32.4884	115.2420	N-S	0	5.00	51.40	0.68	ALTUS-K2/	1026
(CHI)			Vert	+	5.00	53.60	0.67	FBA-interno	
			E-O	90	5.00	53.40	0.68		
CICESE	31.8683	116.6642	N-S	0	1.25	400.00	0.70	GMS-18/AC-	100903
(CIC)			E-O	90	1.25	400.00	0.70	63MIA -	
			Vert	+	1.25	400.00	0.70	interno	
EL FARO	32.2900	115.3240	E-O	90	2.50	208.00	1.00	ALTUS-K2/	1155
(EFA)			N-S	0	2.50	222.00	1.00	Episensor-	
			Vert	+	2.50	220.00	1.00	externo	
GEOTERMICA	32.4000	115.2400	N-S	0	1.25	400.00	0.70	GMS-18/AC-	100199
(GEO)			E-O	90	1.25	400.00	0.70	63MIA -	
			Vert	+	1.25	400.00	0.70	interno	
HEROES DE LA	31.6150	115.8820	N-S	0	1.25	51.20	0.64	ALTUS-ETNA/	169
INDEPENDENCIA			Vert	+	1.25	52.30	0.64	FBA-interno	
(HDI)			E-O	90	1.25	51.00	0.66		
HECHICERA	32.5480	115.1460	E-O	90	2.50	212.00	1.00	ALTUS-K2/	1159
(HEC)			N-S	0	2.50	214.00	1.00	Episensor-	
			Vert	+	2.50	214.00	1.00	externo	
KILOMETRO 58	31.8530	116.0870	N-S	0	1.25	400.00	0.70	GMS-18/AC-	100207
(K58)			E-O	90	1.25	400.00	0.70	63MIA -	
			Vert	+	1.25	400.00	0.70	interno	

Tabla 2. Continuación.

Estación	Coordenadas en		Comp.	Or.1	Sen.	Frec.	Am. ²	Inst.	No.
	gra	ados				(Hz)			Serie
	Lat.(N)	Lon.(0)							
NAYARIT (NAY)	32.3140	115.2480	N-S	0	1.25	400.00	0.70	GMS-18/AC-	100204
			E-O	90	1.25	400.00	0.70	63MIA -	
			Vert	+	1.25	400.00	0.70	interno	
RANCHO AGUA	32.0203	116.3012	N-S	0	1.25	400.00	0.70	GMS-18/AC-	100200
CALIENTE			E-O	90	1.25	400.00	0.70	63MIA -	
(RAC)			Vert	+	1.25	400.00	0.70	interno	
RANCHO SAN	32.1160	115.8407	N-S	0	1.25	400.00	0.70	GMS-18/AC-	100203
LUIS(RSL)			E-O	90	1.25	400.00	0.70	63MIA -	
			Vert	+	1.25	400.00	0.70	interno	
SALTILLO	32.4222	115.1303	N-S	0	1.25	400.00	0.70	GMS-18/AC-	100201
(SAL)			E-O	90	1.25	400.00	0.70	63MIA -	
			Vert	+	1.25	400.00	0.70	interno	
SANTO TOMAS	31.5530	116.4080	E-O	90	5.00	222.00	1.00	ALTUS-K2/	1158
(STO)			N-S	0	5.00	218.00	1.00	Episensor-	
			Vert	+	5.00	216.00	1.00	externo	
TAMAULIPAS	32.5495	115.2357	N-S	0	1.25	400.00	0.70	GMS-18/AC-	100208
(TAM)			E-O	90	1.25	400.00	0.70	63MIA -	
			Vert	+	1.25	400.00	0.70	interno	
VICTORIA (VIC)	32.2900	115.1000	N-S	0	1.25	300.00	0.70	GMS-18/AC-	100209
			E-O	90	1.25	400.00	0.70	63MIA -	
			Vert	+	1.25	400.00	0.70	interno	

Abreviaturas utilizadas: Comp. = Componente, Or. = Orientación geográfica (acimut) de las componentes horizontales (longitudinal y transversal) y la polaridad de la componente vertical, Sen. = Sensibilidad, Frec. = Frecuencia natural, Am. = Amortiquamiento de los acelerómetros, Inst. = Tipo de instrumento y No. Serie = Número de serie.

- 1: Con base en los resultados de pruebas realizadas, se ha determinado que en los instrumentos *Altus* que funcionan con sensores *FBA*, un movimiento hacia arriba (+) en el registro vertical significa un movimiento hacia abajo del terreno. No obstante, para el resto de los instrumentos, el movimiento hacia arriba en el registro vertical, significa un movimiento hacia arriba en el terreno. En el caso de los registros horizontales obtenidos con instrumentos *Altus* que utilizan sensores *FBA*, un movimiento hacia abajo de la traza indica que el terreno se movió en la dirección positiva (dirección de orientación) del acelerómetro. Por otra parte, en los registros horizontales obtenidos con el resto de los instrumentos, el movimiento del terreno en la dirección de orientación del acelerómetro está indicado por un movimiento hacia arriba de la traza.
- 2: Los valores de amortiguamiento son expresados como un porcentaje del valor crítico, escrito en decimal.

3. Mantenimiento de la red y recolección de los datos

El mantenimiento de la red y la recolección de sus datos son planeados desde el principio de cada año. El mantenimiento consiste en recorridos bimestrales de aproximadamente 5 días de duración cada uno. Sin embargo, si entre estos períodos se registra un sismo de magnitud importante (4.0 o mayor), los datos se recuperan lo antes posible de las estaciones de la red para su procesamiento y análisis.

El mantenimiento de las estaciones y la recolección de los datos consiste en:

- ✓ Limpieza de la estación, principalmente de los paneles solares para las estaciones que utilizan esta fuente de energía.
- ✓ Revisión del tiempo del reloj interno del instrumento.
- ✓ Recolección de los datos en archivos digitales, para aquellos equipos que no poseen la capacidad de transmisión de sus datos por medio de Internet.
- ✓ Revisión general del funcionamiento del instrumento, por medio de pruebas de funcionalidad que aceptan los equipos.

4. Procesamiento de los datos

El procesamiento de los datos de aceleración se realiza siguiendo la secuencia estándar descrita por Trifunac y Lee (1973). Esta secuencia consiste en obtener los Volúmenes I, II y III de datos. El Volumen I está constituido por los registros de aceleración corregidos sólo por la sensibilidad del instrumento y por la línea de base. El Volumen II consiste de acelerogramas corregidos por el efecto del instrumento y de registros de velocidad y desplazamiento obtenidos a partir de la integración de los acelerogramas corregidos. Finalmente, el Volumen III lo constituyen los espectros de Fourier y de respuesta, obtenidos estos últimos para varios valores de amortiguamiento.

En nuestro caso todos los datos de aceleración registrados por la red, son procesados en el laboratorio hasta la obtención del Volumen I. Solamente en los casos de acelerogramas de sismos importantes por su magnitud, por los efectos sentidos durante su ocurrencia, por el número de estaciones que los registraron o por formar parte de algún estudio en particular, son procesados hasta la obtención de los Volúmenes II y III.

Los programas utilizados para la obtención del Volumen I son: *K2.Exe* para los instrumentos *Altus-K2* y *Altus-ETNA*, y **GeoDas.Exe** junto con *GMS.Py* para los instrumentos *GMS-18*. Tanto **K2.Exe** como *GMS.Py* fueron escritos por M. Luna. Para la obtención de los Volúmenes II y III se utiliza un paquete de programas en Matlab escritos por L. Munguía.

En la Figura 3 se presenta un diagrama de bloques de la secuencia que se utilizó durante el año 2015 para el procesamiento de los datos.

Para el almacenamiento de los datos procesados (Volumen I), el formato utilizado es el *Formato Estándar para la Base Mexicana de Datos de Sismos Fuertes* Versión 2.0 (Alcántara y otros, 2000) (ver Apéndice A de este documento).

4.1 Nomenclatura utilizada con los archivos del Volumen I

El nombre que reciben los archivos que contienen los datos de aceleración, corregidos por la sensibilidad y por la línea de base y que además se encuentran en el *Formato Estándar para la Base Mexicana de Datos de Sismos Fuertes*, se forma de la siguiente manera: Las tres primeras letras del archivo indican el código de la estación que haya registrado el sismo, un signo de subrayado, ocho dígitos más correspondientes a la fecha de ocurrencia del sismo, los primeros dos de estos ocho, indican el día, los siguientes dos el mes y los cuatro restantes indican el año. A la posición 13 le corresponde otro signo de subrrayado y las posiciones 14 a la 19 nos indican la hora de la primera muestra del registro, los primeros dos dígitos de este grupo indican la hora, los siguientes dos indican el minuto y los últimos dos indican el segundo. La extensión de estos archivos está formada por los caracteres 'Dat'. Por último, el nombre del archivo y su extensión, como es usual, van unidos por medio de un punto decimal. Un ejemplo de esta nomenclatura es: DEL_15072015_070414.Dat.

Al igual que los archivos de datos V1, los archivos originales son renombrados con la misma nomenclatura con excepción de la extensión, en donde se conserva la extensión original que es asignada al archivo inicialmente por el instrumento, esto es, EVT para acelerógrafos *ETNA* y *K2* y MSD (mini seed) para los instrumentos *GMS-18*. Estos archivos contienen la información original tal y como es grabada por cada uno de los instrumentos mencionados.

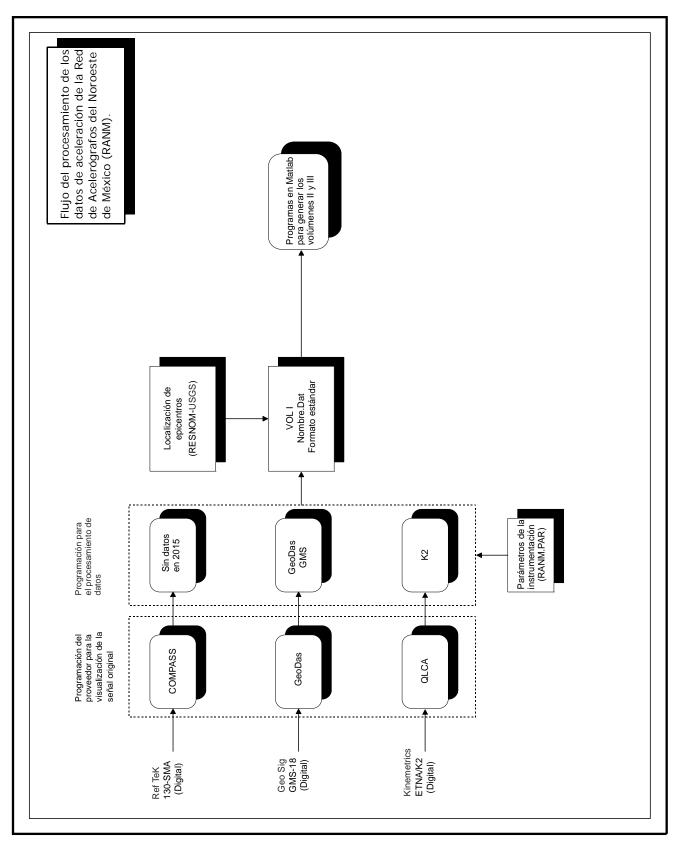
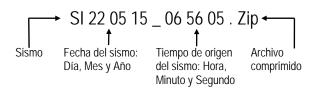


Figura 3. Esquema general del procesamiento realizado a los datos de RANM.

5. Almacenamiento de la información


Los archivos con los datos de aceleración corregidos por la línea de base y por la sensibilidad del instrumento, Volumen I, se agrupan y guardan comprimidos por evento. Junto con estos archivos de datos de aceleración, se almacenan además los archivos de datos crudos (ver Tabla 3). Para compactar y descompactar los archivos comprimidos se empleó el programa 7-Zip que es de distribución libre y gratuito .

5.1 Nomenclatura de los archivos comprimidos en los que se agrupan los datos por evento

La nomenclatura de los archivos comprimidos está formada por las letras *SI* (letras iniciales de la palabra sismo) seis dígitos que indican la fecha de registro; los primeros dos dígitos indican el día, los siguientes dos indican el mes y los últimos dos indican el año respectivo; un signo de subrayado y seis dígitos más que indican, en las primeras dos posiciones, la hora, dos posiciones mas para el minuto y las restantes dos para el segundo. Estos últimos seis dígitos hacen referencia al tiempo de origen del sismo, cuando este está localizado, en caso contrario, el tiempo utilizado es el de la primera muestra del registro con el menor tiempo.

En cuanto a la extensión de los archivos, esta está formada por la cadena de caracteres 'Zip', que denota el tipo de compresión (algoritmo) utilizado para la obtención del archivo comprimido.

Como ejemplo considérese el archivo Si220515_065605.Zip, que corresponde al sismo registrado el 22 de mayo del año 2015 con tiempo de origen a las 06:56:05.

Este sismo fue registrado en las estaciones Chihuahua (CHI), Tamaulipas (TAM) y VICTORIA (VIC). Consecuentemente, como se puede apreciar en la Tabla 3, el archivo comprimido Si220515_065605.Zip contiene seis archivos: tres de datos crudos, en binario (CHI_22052015_065542.Evt, TAM__22052015_065542.Msd y VIC__22052015_065546.Msd; la extensión 'Msd' en dos de los tres archivos, indica que los sismos fueron registrados en equipos *GMS-18*, en tanto que la extensión 'Evt' en el archivo restante, indica que el sismo fue registrado en un instrumento *ALTUS-ETNA* o *ALTUS-K2*) y tres archivos más, que corresponden al Volumen I de los datos de aceleración (CHI_22052015_065542.Dat, TAM__22052015_065542.Dat y VIC__22052015_065546.Dat).

Tabla 3. Contenido del archivo comprimido Si220515_065605.Zip

CHI_22052015_065542.Dat CHI_22052015_065542.Evt

TAM_22052015_065542.Dat TAM_22052015_065542.Msd

VIC_22052015_065546.Dat VIC_22052015_065546.Msd

Finalmente, los archivos comprimidos se organizan por mes y año y se respaldan en discos ópticos (DVD).

La información registrada por la red desde el año 1976 hasta el año 1999, forma parte de la Base Mexicana de Datos de Sismos Fuertes CD-ROM Vol. 2, 2000.

6. Sismos registrados.

Durante el año 2015 se localizaron 42 de los 67 sismos registrados por la red. Los datos de las localizaciones fueron obtenidos de la Red Sísmica del Noroeste de México (RESNOM) y del United States Geological Survey's (USGS).

El modelo de corteza utilizado por la Red Sísmica del Noroeste de México en la localización de hipocentros en el Valle de Mexicali, es el reportado por Munguía (1995) y está basado en la estructura de velocidades propuesta por McMechan y Mooney (1980) para el Valle Imperial. Para el caso de sismos del Macizo Rocoso Peninsular, el modelo de velocidades que se usó es el propuesto por Nava y Brune (1982). Estos modelos se usaron en combinación con el programa *HYPOCENTER* V. 4.0 de Lienert (1995). Los epicentros obtenidos se muestran en el mapa de la Figura 4 y se listan en la Tabla 4, en donde además se proporciona la profundidad y la magnitud correspondiente.

Figura 4. Epicentros (círculos) de 42 sismos registrados por RANM y localizados en su mayoría, a partir de los datos de las estaciones de RESNOM y de la Red del Sur de California. Las estaciones de RANM están representadas por triángulos, en tanto que las estaciones de RESNOM y de la Red del Sur de California, se encuentran representadas por pentágonos y cuadros respectivamente.

Adicionalmente, en la Tabla 4 se incluye información sobre las estaciones de RANM que registraron cada sismo, la distancia epicentral y los valores máximos de aceleración registrados en cada una de las componentes de las estaciones.

Del total de sismos localizados, 11 fueron ubicados en la región del Macizo Rocoso Peninsular, los 31 restantes, en la región del Valle de Mexicali Imperial. Las profundidades obtenidas están comprendidas entre 1.0 y 19.2 km. De los sismos registrados, sólo tres fueron de magnitud M_L igual o mayor a 4.0 (ver Figura 5). Uno de ellos fué hubicado en la región del **VMI**, y los otros dos en el **MRP**.

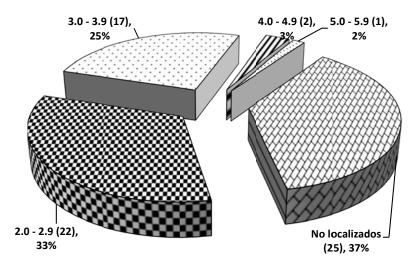


Figura 5. Magnitud de los 67 sismos registrados durante el año 2015

De los 42 sismos localizados, 23 fueron registrados en una sola estación de RANM, 8 en 2 estaciones, 3 en 3 estaciones y los 8 restantes se registraron en 4 o más estaciones. Los valores máximos de aceleración observados durante el período, fueron producidos por el sismo ocurrido el 13 de diciembre de 2015 a las 04:36:16 en la región del VMI. Este sismo de magnitud MI = 3.0, produjo una aceleración máxima absoluta de 108.4 cm/seg² en la componente horizontal **NS** de la estación **GEO** a una distancia de 2.0 Km.

La Figura 6 muestra el número de registros obtenidos por estación, asi como la cantidad de estos con localización durante el año 2015.

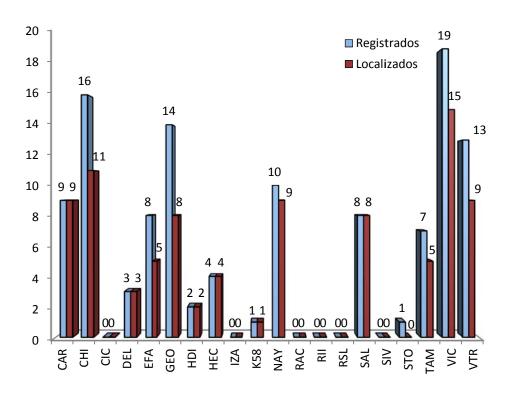


Figura 6.Número de registros anuales y con localización obtenidos por cada estación de RANM en el año 2015

Los equipos que mayor actividad registraron en el año fueron los *GMS-18* (Figura 7).

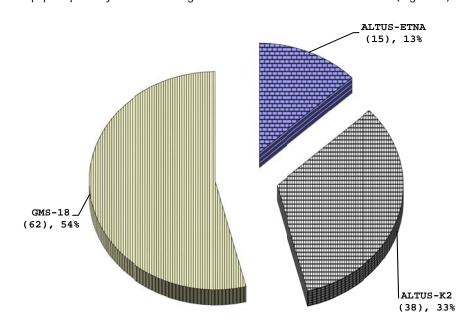


Figura 7. Registros obtenidos durante el año 2015 según el tipo de instrumento

Tabla 4. Sismos registrados por la Red de Acelerógrafos del Noroeste de México, durante el año 2015.

l abla 4.		os por la Red de A			-	lexico,	durante			7 Mássims	_
Archivo	Fecha (d/m/a)	T. Origen (h:m:s.s)	Lat. (N)	Lon. (O)	P.F. (km)	$M_{\rm L}$	Est.	Dis. (Km)	N-S.	 Máxima Vert. 	E-O.
Si040215_115051.Zip	04/02/2015	11:50:51.000	32.413	115.244	8.0	3.1	CHI	8.3	14.0331	6.7110	8.8456
							*SAL	10.7	-6.8389	-4.3195	-4.8959
S:00021E 014E02 7:5	00/02/2015	01.45.03.000	21 527	115 662	Γ 0	г э	\/TD	15 1	-31.3424	22 2016	42.0602
Si090215_014503.Zip	09/02/2015	01:45:03.000	31.527	115.663	5.0	5.2	VTR HDI	15.1 22.9	43.3133	-23.3916 28.8112	-42.8682 33.8866
							CAR	85.6	-14.2204	4.4326	-25.4229
							EFA	90.6	10.0198	6.8513	21.6439
							VIC	100.1	32.3688	-11.1178	29.1374
							*SAL	111.4	18.8750	4.0409	17.7606
							CHI TAM	113.9 120.5	6.8370 8.0673	3.0480 3.7577	-7.5709 -6.2898
							HEC	123.5	-6.0263	2.5953	-7.9755
Si090215_014538.Zip	09/02/2015						VTR		-1.2412	-0.9951	-1.0799
Si090215_063421.Zip	09/02/2015						VTR		-1.6708	0.8584	1.0698
Si090215_071744.Zip	09/02/2015	07:17:44.000	31.522	115.667	4.0	3.1	VTR	14.5	-3.7712	3.4215	-2.5079
Si090215_102625.Zip	09/02/2015	10:26:25.000	31.530	115.656	1.0	2.5	VTR	15.7	1.4024	-1.6627	2.3716
Si100215_165849.Zip	10/02/2015	16:58:49.000	31.522	115.669	2.0	2.5	VTR	14.4	-1.9634	1.1356	1.2597
Si120215 161407.Zip	12/02/2015	16:14:07.000	32.177	115.241	14.0	3.0	CAR	7.8	-26.1125	6.1446	-12.3457
31120213_101407.21p	12,02,2013	10.14.07.000	32.177	113.241	14.0	5.0	VIC	18.3	9.9271	-6.3885	12.8852
Si140215_215551.Zip	14/02/2015	21:55:51.000	31.527	115.660	3.0	3.3	VTR	15.2	2.3288	1.8014	-1.7137
Si040315_164625.Zip	04/03/2015	16:46:25.000	31.656	115.910	5.0	2.7	HDI	5.3	-16.6159	6.6824	10.4473
Si090315_112730.Zip	09/03/2015	11:27:30.000	31.514	115.653	5.0	2.7	VTR	14.1	1.4191	1.4471	0.9594
Si090315_112804.Zip	09/03/2015						VTR		0.1407	-0.0589	0.0543
Si020415 185013.Zip	02/04/2015	18:50:13.000	32.425	115.197	8.0	3.2	*SAL	6.3	-7.4335	9.5917	9.3914
	,,						CHI	8.2	18.5572	-10.3289	10.9824
							VIC	17.6	-9.2032	3.4447	-13.3876
Si060415_175807.Zip	06/04/2015	17:58:07.000	31.228	115.880	5.0	3.5	VTR	24.6	1.9633	1.3180	1.1696
Si080415_192313.Zip	08/04/2015	19:23:13.000	32.428	115.207	8 N	4.2	*SAL	7.3	-32.3066	30.6899	-28.8267
31000413_132313.2ip	00/04/2013	13.23.13.000	32.420	113.207	0.0	7.2	CHI	7.3	76.6041	-30.8783	-43.5816
							TAM	13.7	-18.2160		-14.2079
							HEC	14.5	-8.6605	5.5729	-7.3465
							VIC	18.3	-27.1172	-22.5312	
							EFA	18.9	7.1055		-11.0421
							CAR	29.4	-10.3403	5.5563	-18.5467
Si080415_192404.Zip	08/04/2015						CHI		-5.5401	-3.8865	4.8377
							EFA		0.4633	1.0476	0.9774
Si080415_193025.Zip	08/04/2015	19:30:25.000	32.419	115.223	8.0	3.9	CHI	7.9	54.0699	-29.4091	-44.6617
							*SAL	8.7	-19.5968	31.7940	-15.1876
							TAM	14.5	10.6811	23.7133	-9.4174
							HEC	16.1	3.6004	5.3436	7.6339
							VIC	18.4	-12.8211	7.7814	13.7122

Tabla 4. continuación

	continuación				 						
Archivo	Fecha (d/m/a)	T. Origen (h:m:s.s)	Lat. (N)	Lon. (0)	P.F. (km)	$M_{\rm L}$	Est.	Dis. (Km)	Ace N-S.	l. Máxima Vert.	E-O.
Si080415_193118.Zip	08/04/2015						CHI		-5.0164	1.0485	3.2741
Si260415_192138.Zip	26/04/2015	19:21:38.000	31.514	115.675	10.0	2.8	VTR	13.4	-1.8562	-1.4874	1.3082
Si090515_022206.Zip	09/05/2015	02:22:06.990	32.117	115.167	19.2	2.8	CAR VIC	5.6 20.2	26.7597 4.1110	13.7741 -1.5811	-17.8329 -6.1223
Si120515_191520.Zip	12/05/2015	19:15:20.000	32.185	115.189	11.0	2.3	CAR	3.5	9.3979	-9.5367	6.7379
Si160515_013621.Zip	16/05/2015						VTR		-5.7690	4.9621	3.5611
Si160515_145715.Zip	16/05/2015						CHI		-3.1402	-1.9648	-2.0655
Si160515_145738.Zip	16/05/2015	14:57:38.020	32.401	115.221	10.0	2.4	CHI	9.9	3.1334	-4.1681	-5.1231
Si160515_145812.Zip	16/05/2015						CHI		1.5667	-3.9761	-1.3371
Si180515_000617.Zip	18/05/2015	00:06:17.000	31.358	115.829	5.0	2.9	VTR	11.8	3.2877	-3.0505	-3.8520
Si220515_050557.Zip	22/05/2015	05:05:57.000	32.423	115.246	8.0	3.1	CHI	7.2	8.9463	-8.2486	7.4306
							*SAL	10.9	4.4826	-10.5819	4.0926
							VIC	20.2	-7.7484	-2.6250	-7.1830
Si220515_065605.Zip	22/05/2015	06:56:05.000	32.425	115.243	8.0	3.3	CHI	7.0	12.3767	10.1439	17.6796
							*SAL	10.6	8.4623	8.0322	-5.8602
							TAM VIC	13.8	-0.7646	0.5148	-0.3695
S:220F1F 06F600 7in	22/05/2015						TAM	20.1	-9.4649	-2.6796	-6.0154
Si220515_065609.Zip	22/05/2015 22/05/2015						TAM		3.4136 -0.7469	8.1881 0.5332	-2.9186 -0.5281
Si220515_065657.Zip	22/03/2013						IAIVI		-0.7409	0.3332	-0.5281
Si280515_120359.Zip	28/05/2015	12:03:59.000	32.253	115.267	15.0	3.1	EFA	6.8	28.9806	-9.6439	-6.5245
							NAY	7.0	-27.4709	8.5715	14.7487
Si280515_121340.Zip	28/05/2015	12:13:40.000	32.265	115.267	15.0	3.4	NAY	5.7	17.9666	9.7434	-16.0173
							EFA	6.0	9.4219	8.2624	5.2482
							CAR	14.9	7.6165	-2.6237	-5.3749 -6.3801
C:040C4E 4CE444 7:-	04/06/2015						VIC	15.9	-5.2198	-2.6059	
Si040615_165444.Zip	04/06/2015						STO		11.0470	3.1508	9.6521
Si100615_152603.Zip	10/06/2015	15:26:03.000	32.362	115.337	16.0	2.5	NAY	9.9	-6.0329	3.9079	-9.4359
Si280615_100804.Zip	28/06/2015						VIC		4.1462	1.9303	-5.4451
Si300615_214743.Zip	30/06/2015	21:47:43.000	32.429	115.215	8.0	2.9	CHI VIC	7.0 18.8	-11.2484 -3.7202	6.6362 2.0034	-10.3886 -6.0760
Si150715_070433.Zip	15/07/2015	07:04:33.000	32.234	115.282	7.0	2.7	DEL	16.1	2.3663	-4.2710	-3.9278
Si030815_125230.Zip	03/08/2015	12:52:30.000	32.289	115.297	15.0	2.7	DEL	12.7	-8.7457	-4.8914	-2.9746
Si120815_170424.Zip	12/08/2015						СНІ		-22.7588	-7.3203	53.8333

Tabla 4. continuación

Tabla 4.	continuación										
Archivo	Fecha (d/m/a)	T. Origen (h:m:s.s)	Lat. (N)	Lon. (0)	P.F. (km)	$M_{\rm L}$	Est.	Dis. (Km)	Ace N-S.	l. Máxima Vert.	E-O.
Si120815_203813.Zip	12/08/2015	20:38:13.000	32.370	115.310	11.0	2.5	DEL	11.7	-2.3785	3.7334	-3.8730
Si071015_132850.Zip	07/10/2015	13:28:50.000	32.368	115.276	10.0	3.5	NAY	6.6	7.5863	-6.4037	-8.9607
							*SAL VIC	15.0 18.7	5.2611 6.7917	-6.6292 -3.8217	-4.1392 -8.7684
							HEC	23.4	-5.6371	2.6567	-4.3368
Si271015_182010.Zip	27/10/2015	18:20:10.000	32.385	115.489	15.0	3.6	TAM	29.9	-7.3067	3.5565	4.9976
Si131115_171718.Zip	13/11/2015	17:17:18.000	31.629	116.009	6.0	4.0	K58	26.0	13.3847	-11.0869	19.5585
Si221115_005315.Zip	22/11/2015	00:53:15.000	32.119	115.215	10.0	2.8	CAR VIC	7.5 21.9	6.9431 -4.1938	3.3632 -2.1648	17.4092 -4.5767
Si291115_221956.Zip	29/11/2015	22:19:56.000	32.295	115.268	14.0	2.1	NAY	2.8	4.6094	-2.6803	6.5231
Si301115_192225.Zip	30/11/2015	19:22:25.000	32.363	115.362	15.0	2.1	GEO	12.2	-2.3535	-1.4259	-4.0618
Si041215_023248.Zip	04/12/2015						VIC		4.7598	-5.5321	-4.3268
Si071215_185335.Zip	07/12/2015	18:53:35.900	32.416	115.250	10.9	2.3	GEO	2.0	-10.8108	-5.4474	-10.0862
Si071215_185359.Zip	07/12/2015						GEO		1.3073	-1.3686	1.6666
Si081215_115249.Zip	08/12/2015	11:52:49.000	32.305	115.330	15.0	2.6	NAY	7.8	-3.3591	-2.0912	5.0438
Si081215_115315.Zip	08/12/2015						NAY		-1.0374	-0.4710	1.1010
Si101215_120634.Zip	10/12/2015						GEO		-8.7378	4.3035	-12.0983
Si101215_120723.Zip	10/12/2015	12:07:23.680	32.367	115.248	9.3	2.3	GEO	3.7	46.5621	18.3630	-84.4097
Si101215_120735.Zip	10/12/2015						GEO		-5.7107	-5.1297	-5.8700
Si111215_042134.Zip	11/12/2015	04:21:34.000	32.363	115.413	15.0	2.9	EFA	11.6	-2.6611	5.3625	-9.4920
							NAY GEO	16.4 16.7	11.0690 3.7658	4.9309 2.4042	11.9308 7.2998
								10.7			
Si111215_042200.Zip	11/12/2015						EFA		0.1962	-0.3392	0.3903
Si111215_042208.Zip	11/12/2015						EFA		-0.1374	0.2505	-0.2943
Si121215_133240.Zip	12/12/2015						GEO		-11.3123	-17.0354	13.8432
Si131215_043616.Zip	13/12/2015	04:36:16.130	32.398	115.261	5.2	3.0	GEO CHI	2.0 10.2	108.3665 -8.7178	-67.9374 4.6612	57.2424 4.1731
Si151215_102542.Zip	15/12/2015	10:25:42.000	32.378	115.195	8.0	2.4	GEO	4.9	-2.3115	2.4845	-3.9786
Si151215_215024.Zip	15/12/2015	21:50:24.000	32.426	115.212	7.0	3.7		3.9	-52.8885	104.0751	
							CHI	7.4	-12.4775	9.4756	-9.8421
							NAY VIC	12.9 18.4	-10.0320 -4.7775	7.3905 3.8099	11.5918 4.8248
Si161215_130518.Zip	16/12/2015						GEO		10.1439	14.0910	17.3770
											J

Tabla 4. continuación

Archivo	Fecha	T. Origen	Lat.	Lon.	P.F.	1./I	Est.	Dis.	Ace	cel. Máximas		
Archivo	(d/m/a)	(h:m:s.s)	(N)	(0)	(km)	$M_{\rm L}$	ESC.	(Km)	N-S.	Vert.	E-O.	
Si181215_212206.Zip	18/12/2015						VIC		-8.7298	7.1271	-7.6009	
Si191215_173648.Zip	19/12/2015	17:36:48.000	32.133	115.161	16.0	3.5	CAR	3.8	16.4302	-7.3620	18.5949	
							VIC	18.4	23.3890	-5.8848	-18.7352	
							NAY	21.7	-4.0557	-3.5279	4.9838	
							GEO	30.6	-3.4470	-1.7847	-7.3938	
Si201215_024745.Zip	20/12/2015	02:47:45.000	32.133	115.162	17.0	3.1	CAR	3.8	10.7344	5.1863	-9.2934	
							VIC	18.4	-10.1691	3.2307	11.1526	
Si221215_090035.Zip	22/12/2015						VIC		9.3222	11.4249	-6.8796	
Si311215_213157.Zip	31/12/2015						GEO		5.1401	3.3577	4.5353	

Abreviaturas utilizadas: T. Origen = Tiempo de Origen, Lat. (N) = Latitud Norte, Lon. (O) = Longitud Oeste, P. F. = Profundidad focal, M_L = Magnitud Local, Est. = Estaciones que registraron el sismo, Dis. = Distancia epicentral y Acel. Máximas, N-S Vert. E-O. = Valores máximos de aceleración en cm/s², registrados en las componentes Norte-Sur, vertical y Este-Oeste, respectivamente.

Nota: En el año 2014 se obtubieron dos registros en la estación SAL, los cuales también carecen de tiempo absoluto

Para tener una mayor claridad de los sismos registrados por RANM y con localización durante el año 2015, en la Figura 8 se muestra una gráfica de la cantidad de sismos registrados por mes contra los sismos que se registraron y se pudieron localizar durante el mismo periodo.

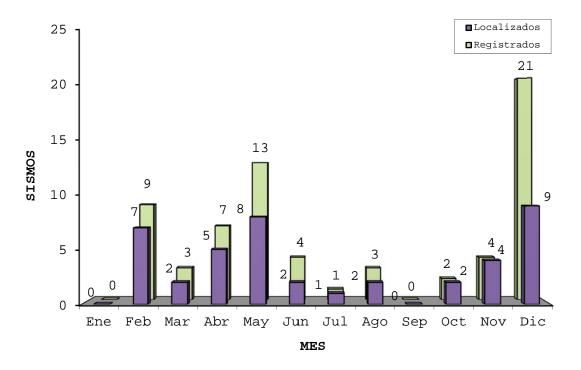


Figura 8. Sismos registrados y localizados por mes durante el año 2015

^{*} Registro digital completo, carece de tiempo absoluto

Por otro lado, la mayoría de los registros obtenidos durante este año, como se puede apreciar en la Figura 9, son de buena calidad, es decir, se encuentran completos y sin saturación en las amplitudes de las ondas.

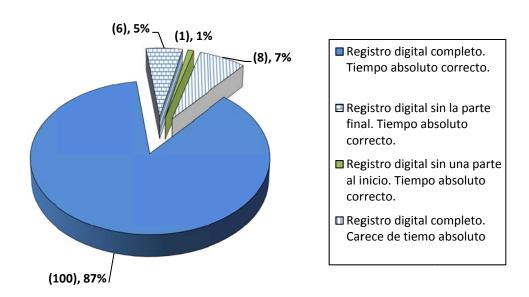


Figura 9. Calidad de los registros obtenidos por RANM durante el año 2015.

7. Disponibilidad de los registros.

Los datos generados por RANM están disponibles para el investigador o estudiante que desee hacer uso de ellos bajo los siguientes criterios:

- 1.- Solicitar los datos a Luis Munguía Orozco, investigador responsable de la red.
- 2.- El investigador o estudiante que haga uso de la información registrada por la red, deberá otorgar el reconocimiento apropiado.
- 3.- La Tabla 4 de este documento, referente a los sismos registrados por la Red durante el presente año, así como las de los años anteriores, pueden ser consultadas en Internet en la dirección 'RANM.CICESE.MX'. Las series de tiempo de algunos de los sismos de mayor magnitud de los últimos años, también están disponibles en esta página de Internet.

8. Sumario

La elaboración del presente reporte de registros de aceleración, ha permitido conocer las aceleraciones generadas por cada uno de los 67 sismos registrados durante el año 2015 en la región de cobertura de RANM. Un sismo de magnitud $M_L=3.0$ registrado en la estación GEO, generó las aceleraciones más altas, del orden de 11% de g. De los sismos localizados, 11 fueron registrados en la región del Macizo Rocoso Peninsular. Un sismo de magnitud $M_L=5.2$ fue el de mayor magnitud que se registró en esta zona. 31 sismos ocurrieron en la región del Valle de Mexicali, la magnitud del mayor de ellos fue de $M_L=4.2$.

Agradecimientos

El funcionamiento de RANM es posible gracias al financiamiento proporcionado por el gobierno de México a través del CICESE y del CONACYT.

Referencias

- Alcántara, L., Quaas, R., Pérez, C., Ayala, M., Macías, M., Sandoval, H., Javier, C., Mena, E., Andrade, E., González, F., Rodríguez, E., Vidal, A., Munguía, L., Luna, M., Espinosa, J., Cuellar, A., Camarillo, L., Ramos, S., Sánchez, M., Guevara, E., Flores, J., López, B., Ruiz, R., Pacheco, J., Ramírez, M., Aguilar, J., Juárez, J., Vera, R., Gama, A., Cruz, R., Hurtado, F., Del Campo, R. y Vera, F., Sociedad Mexicana de Ingenieria Sismica, A. C., Base Mexicana de Datos de Sismos Fuertes CD-ROM Vol. 2, (2000).
- Lienert, B.R.E and Havskov (1995). A computer program for locating earthquakes both locally and globally, Seismological Research Letters, 66, 26-36.
- Luna, M., A. Vidal, L. Munguía, M. Navarro, T. Valdéz y V. Wong. (1996). Catálogo de acelerogramas registrados por la Red de Acelerógrafos del Noroeste de México durante 1996. Comunicaciones Académicas CICESE, CTSIT9701, 86 p.
- Luna, M., L. Munguía, M. Navarro y T. Valdéz. (2010). Catálogo de acelerogramas registrados por la Red de Acelerógrafos del Noroeste de México durante el año 2009. Comunicaciones Académicas, Serie Sismología, CICESE, 100176, 214 p.
- Luna, M., L. Munguía, M. Navarro y T. Valdéz. (2012). Catálogo de acelerogramas registrados por la Red de Acelerógrafos del Noroeste de México durante el año 2011. Comunicaciones Académicas, Serie Sismología, CICESE, 104271, 38 p.
- McMechan, G. A. and W. D. Mooney, (1980). Asymptotic ray theory and synthetic seismograms for laterally varying structures: theory and application to the Imperial, Valley, California. Bull. Seism. Soc. Am. v 70, 2021-2035.
- Munguía, L., (1995). Estudio de microsismicidad en la zona de Riito, Sonora, México. Informe técnico final. CICESE-CFE.
- Nava, F. A., y J. N. Brune (1982). An earthquake-explosion reversed refraction line in the peninsular ranges of southern California and Baja California Norte. Bulletin of the Seismological Society of America. 72, 1195-1206.
- Trifunac, M. D. y V. W. Lee. (1973). Routine processing of strong motion accelerograms. Earthquake Engineering Research Laboratory report EERL 73-03. California Institute of Technology, Pasadena, California.
- Vidal, A., L. Munguía, M. Luna, V. Wong, M. Navarro y T. Valdéz. (1996). Catálogo de acelerogramas registrados por la Red de Acelerógrafos del Noroeste de México durante 1995. Comunicaciones Académicas CICESE, CTSIT9603, 55pp.

APENDICES

```
********************
1
2
       CENTRO DE INVESTIGACION CIENTIFICA Y DE EDUCACION SUPERIOR DE ENSENADA
3
                   GRUPO DE SISMOLOGIA DE MOVIMIENTOS FUERTES
   CARR. ENSENADA-TIJUANA NO. 3918 ZONA PLAYITAS, ENSENADA B. C. MEXICO, C.P. 22860
    APDO. POSTAL No. 360, TEL.: 01 (646) 175-05-00, FAX: 01 (646) 175-05-59
   ARCHIVO ESTANDAR DE ACELERACION:
   VERSION DEL FORMATO
8
                                    : 2.0
                                    : DEL_15072015_070414.Dat
   NOMBRE DEL ARCHIVO
   FECHA Y HORA DE CREACION : 12 DE MAYO DE 2016
10
   REF. CATALOGO ACELEROGRAMAS, SMIS 1995 : Reg. Num.
11
12
13
14
   ______
15
   DATOS DE LA ESTACION:
   NOMBRE DE LA ESTACION
16
                                    : DELTA
                                   : DEL
17
   CLAVE DE LA ESTACION
   LOCALIZACION DE LA ESTACION : Valle de Mexicali, Baja California.
18
19
20
21
22
   COORDENADAS DE LA ESTACION
                                    : 32.355 Lat. N
23
                                    : 115.187 Long. O
24
                                    : 28
25
   ALTITUD (msnm)
   TIPO DE SUELO
                                    : Sedimentos (aluvion)
26
27
28
29
   INSTITUCION RESPONSABLE
                                    : Departamento de Sismologia, CICESE
30
31
32
   _______
   DATOS DEL ACELEROGRAFO:
33
34
   MODELO DEL ACELEROGRAFO
                                    : GMS-18
                                   : 100204
   NUMERO DE SERIE DEL ACELEROGRAFO
35
   NUMERO DE CANALES
37
   ORIENTACION C1-C6 (rumbo; orientacion) : /NOOE; /N9OE; /V; +
38
   ORIENTACION C7-C12 (rumbo; orientacion) :
39
   VEL. DE MUESTREO, C1-C6 (muestras/s) : /200/200/200
   VEL. DE MUESTREO, C7-C12 (muestras/s) :
40
41
   ESC. COMPLETA DE SENSORES, C1-C6, (g)
                                    : /2.00/2.00/2.00
   ESC. COMPLETA DE SENSORES, C7-C12, (g):
42
43
   FREC. NAT. DE SENSORES, C1-C6, (Hz)
                                   : /400.00/400.00/400.00
44
   FREC. NAT. DE SENSORES, C7-C12, (Hz)
                                   :
: /0.70/0.70/0.70
45
   AMORTIGUAMIENTO DE SENSORES, C1-C6
46
   AMORTIGUAMIENTO DE SENSORES, C7-C12
                                   : /0.005/0.005/0.005
47
   INTERVALO DE MUESTREO, C1-C6, (s)
   INTERVALO DE MUESTREO, C7-C12, (s)
48
   UMBRAL DE DISPARO, C1-C6, (Gal)
49
50
   UMBRAL DE DISPARO, C7-C12, (Gal)
   MEMORIA DE PREEVENTO (s)
51
                                    : 30.00
52
   TIEMPO DE POSEVENTO (s)
                                    : 90.00
53
54
55
   ______
56
   DATOS DEL SISMO:
57
   FECHA DEL SISMO (GMT)
                                   : 15 de JULIO del 2015
                                   : 07:04:33.00
   HORA EPICENTRO (GMT)
58
59
   MAGNITUD(ES)
                                    : /Ml = 2.7
60
   COORDENADAS DEL EPICENTRO
                                   : 32.234 LAT. N
61
                                    : 115.282 LONG. O
62
   PROFUNDIDAD FOCAL (km)
                                    : 7.0
                                   : Departamento de Sismologia, CICESE
63
   FUENTE DE LOS DATOS EPICENTRALES
                                   : RESNOM
65
66
   _______
67 DATOS DE ESTE REGISTRO:
```

```
68 HORA DE LA PRIMERA MUESTRA (GMT)
                             : 07:04:14.059
                            : 0.001
: /123.20/123.20/123.20
69
   EXACTITUD DEL TIEMPO (s)
70
   DURACION DEL REGISTRO (s), C1-C6
   DURACION DEL REGISTRO (s), C7-C12
71
   NUM. TOTAL DE MUESTRAS, C1-C6
                             : /24640/24640/24640
72
73
   NUM. TOTAL DE MUESTRAS, C7-C12
                             : /2.3663/-3.9278/-4.2710
74
   ACEL. MAX. (Gal), C1-C6
75
   ACEL. MAX., C1-C6, EN LA MUESTRA
                             : /5952/6014/5400
   ACEL. MAX. (Gal), C7-C12
76
77
   ACEL. MAX., C7-C12, EN LA MUESTRA
   UNIDADES DE LOS DATOS
78
                             : Gal (cm/s/s)
79
   FACTOR DE DECIMACION
                             : 1
80
   FORMATO DATOS (FORTRAN, 10 campos/dato): 3F10.4
81
82
83
   ______
84
  CALIDAD DEL ACELEROGRAMA:
  Registro digital completo. Tiempo absoluto correcto.
85
86
87
88
  ______
89
   COMENTARIOS:
90
91
92
93
94
95
96
97
98
99
100
101
102
103
105 DATOS DE ACELERACION:
106 -----+
107
    CANAL-1 CANAL-2 CANAL-3 CANAL-4 CANAL-5 CANAL-6 CANAL-7 CANAL-8
110 -0.0118 -0.0214 0.0051
   -0.0087 -0.0144 0.0009
-0.0211 -0.0238 -0.0058
111
112
```

Apéndice B. Cronología de la instrumentación de la red durante el año 2015

En la Tabla B1 se detallan los cambios de instrumentación hechos a cada una de las estaciones. Para ello, se utiliza una serie de abreviaturas cuyo significado se proporciona a continuación para que el lector interprete correctamente la información contenida.

- Cod. = Código de la estación.
- N.Serie. = Número de serie del instrumento.
- Latitud (ggg.ggg) y Longitud (ggg.ggg) = Latitud y longitud correspondientes a las coordenadas geográficas de la estación en grados (ggg.ggg).
- Elevac. (m) = Elevación expresada en metros.
- Fecha de Instal. (dd/mm/aa) = día, mes y año de la fecha de instalación.
- Fecha de u/revisión. (dd/mm/aa) = día, mes y año de la última revisión realizada a la instrumentación de la estación.

Los datos anteriores están contenidos en los primeros dos renglones de cada estación. En los siguientes tres, está contenida la información relativa a los parámetros del instrumento, de acuerdo a la siguiente nomenclatura.

- Comp.1, 2 ó 3 = Número de canal del instrumento.
- Orientación = indican la orientación de las dos componentes horizontales (N-S y E-O) y la polaridad de la componente vertical (vert), que es indicada por el símbolo "+".
- Sensibilidad = Es la sensibilidad del acelerómetro en cada componente. Estos valores son expresados en Volt/g.
- F. natural = Frecuencia natural del acelerómetro expresada en Hertz.
- Amort. = Valor del amortiguamiento del acelerómetro (expresado como una fracción del valor crítico).
- Tipo de sensor = Acelerómetro utilizado para el registro de la señal.

La información que va precedida de la letra "c", indica que los datos corresponden a instrumentos que dejaron de funcionar durante el periodo (ver fechas de instalación y cambio). En los casos en que el renglón no empieza con la letra "c", significa que los datos anotados son de la instrumentación que funcionaba a la fecha de la última revisión.

Tabla B1 Cronología de la instrumentación de RANM durante el año 2015

	Tabla B1	Cronología de la ins	trumentación de RAN	M durante el año 2015		
	Cod. (N	Nombre de la est	ación)			
	Instrumento	N. Serie	Latitud	Longitud	Elevac.	Fecha de Fecha de
			(ggg.ggg)	(ggg.ggg)	(m)	Instal. u/revisión
					` '	(dd/mm/aa) (dd/mm/aa)
	Comp. 1	Orientacion	Sensibilidad	F. natural	Amort.	Tipo de sensor
	Comp. 1	Offentacion	(volt/g)	(Hz)	7 miort.	Tipo de sensor
	Comp 2	Orientacion	Sensibilidad	F.natural	Amort.	
_	Comp. 2					_
	Comp. 3	Orientacion	Sensibilidad	F.natural	Amort.	
1.	•	ANCITAS)	20 167	115 150	0	22/00/12 25/11/15
	ALTUS-K2 1 E-O	1580 90	32.167 2.50	115.159	8 0.70	23/08/13 25/11/15 Episensor interno
	2 N-S	0	2.50	204.00 208.00	0.70	Episensor interno
	3 vert	+	2.50	206.00	0.70	
2.	CHI (CHIHU		2.00	200.00	0.70	
	ALTUS-K2	1026	32.488	115.242	15	25/05/11 26/11/15
	1 N-S	0	5.00	51.40	0.68	FBA interno
	2 vert	+	5.00	53.60	0.67	
	3 E-O	90	5.00	53.40	0.68	
3.	CIC (CICESE					
С	GMS-18	100202	31.868	116.664	60	19/11/10 02/12/15
С	1 N-S	0	1.25	400.00	0.70	AC-63MIA-interno
C	2 E-O	90	1.25	400.00	0.70	
С	3 vert GMS-18	+ 100903	1.25 31.868	400.00 116.664	0.70 60	02/12/15 02/12/15
	1 N-S	100903	1.25	400.00	0.70	AC-63MIA-interno
	2 E-O	90	1.25	400.00	0.70	AC-03MIA-IIICEIIIO
	3 vert	+	1.25	400.00	0.70	
4.	DEL (DELTA					
С	GMS-18	100204	32.355	115.187	28	13/10/10 25/11/15
С	1 N-S	0	1.25	400.00	0.70	AC-63MIA-interno
С	2 E-O	90	1.25	400.00	0.70	
С	3 vert	+	1.25	400.00	0.70	
5.	EFA (EL FAF					
	ALTUS-K2	1155	32.290	115.324	5	26/11/14 25/11/15
	1 E-O	90	2.50	208.00	1.00	Episensor externo
	2 N-S	0	2.50	222.00	1.00	
6	3 vert GEO (PLANT	+ ra ceoredato	2.50 A DE CERRO PR	220.00	1.00	
6.	GEO (PLAN) ALTUS-ETNA	IA GEOIERMICA 167	32.400	115.240	30	27/10/09 26/11/15
c .	1 N-S	0	1.25	51.10	0.64	FBA interno
C	2 vert	+	1.25	52.10	0.64	1 Bit Titteerite
C	3 E-O	90	1.25	53.40	0.64	
	GMS-18	100199	32.400	115.240	30	26/11/15 26/11/15
	1 N-S	0	1.25	400.00		AC-63MIA-interno
	2 E-O	90	1.25	400.00	0.70	
1_	3 vert	+	1.25	400.00	0.70	
7.		S DE LA INDE		115 000	4400	11/10/00 10/11/1
	ALTUS-ETNA	169	31.615	115.882	1130	11/12/09 18/11/15
	1 N-S 2 vert	0	1.25 1.25	51.20 52.30	0.64	FBA interno
	2 vert 3 E-0	+ 90	1.25	52.30	0.64	
8	HEC (HECH)		1.23	51.00	0.00	
"	ALTUS-K2	1159	32.548	115.146	30	08/11/12 27/11/15
1	1 E-O	90	2.50	212.00	1.00	Episensor externo
	2 N-S	0	2.50	214.00	1.00	
	3 vert	+	2.50	214.00	1.00	
9.	IZA (IGNAC	CIO ZARAGOZA)			
С	130-SMA	AE03	32.193	116.485	541	05/07/11 16/10/15
С	1 vert	+	1.60	500.00	0.70	FBA-nterno
С	2 E-O	90	1.60	500.00	0.70	
C 10	3 N-S	0 4EEDO E 8 \	1.60	500.00	0.70	
1 10		METRO 58)	21 052	116 007	026	04/10/10 10/11/15
<u> </u>	GMS-18	100207	31.853	116.087	926	04/10/12 18/11/15

Tabla B1 Continuación

Tabla B1 (Continuación				
1 N-S	0	1.25	400.00	0.70	AC-63MIA-interno
2 E-O	90	1.25	400.00	0.70	
3 vert	+	1.25	400.00	0.70	
11. NAY (NAYA	RTT)				
c GMS-18	100903	32.314	115.248	3	16/10/13 26/11/15
c 1 N-S	0	1.25	400.00		AC-63MIA-interno
c 2 E-O	90	1.25	400.00	0.70	AC OSMIA INCCINO
c 3 vert	+	1.25	400.00	0.70	
GMS-18	100204	32.314		3	26/11/15 26/11/15
		1.25	115.248		AC-63MIA-interno
1 N-S	0		400.00		AC-63MIA-Interno
2 E-O	90	1.25	400.00	0.70	
3 vert	+	1.25	400.00	0.70	
12. RAC (RANCE					
GMS-18	100200	32.020	116.301	714	01/09/10 18/11/15
1 N-S	0	1.25	400.00		AC-63MIA-interno
2 E-O	90	1.25	400.00	0.70	
3 vert	+	1.25	400.00	0.70	
13. RII (RIITO	O)				
c GMS-18	100199	32.164	114.960	8	14/10/10 26/11/15
c 1 N-S	0	1.25	400.00	0.70	AC-63MIA-interno
c 2 E-0	90	1.25	400.00	0.70	
c 3 vert	+	1.25	400.00	0.70	
14. RSL (RANCHO					
GMS-18	100203	32.116	115.841	1490	02/09/10 17/11/15
1 N-S	0	1.25	400.00		AC-63MIA-interno
2 E-O	90	1.25	400.00	0.70	AC USMIA INCCINO
3 vert	+	1.25	400.00	0.70	
		1.23	400.00	0.70	
15. SAL (SALTI)	,	20 400	115 120	F.0	12/10/10 00/05/14
GMS-18	100201	32.422	115.130	50	13/10/10 08/05/14
1 N-S	0	1.25	400.00		AC-63MIA-interno
2 E-O	90	1.25	400.00	0.70	
3 vert	+	1.25	400.00	0.70	
16. SIV (SANTA		,			
c GMS-18	100205	31.871	115.816	1500	02/09/10 17/11/15
c 1 N-S	0	1.25	400.00		AC-63MIA-interno
c 2 E-O	90	1.25	400.00	0.70	
c 3 vert	+	1.25	400.00	0.70	
17. STO (SANTO	O TOMAS)				
ALTUS-K2	1158	31.553	116.408	25	20/06/13 19/11/15
1 E-O	90	5.00	222.00	1.00	Episensor externo
2 N-S	0	5.00	218.00	1.00	_
3 vert	+	5.00	216.00	1.00	
18. TAM (TAMAI					
GMS-18	100208	32.549	115.236	15	26/05/11 11/09/14
1 N-S	0	1.25	400.00		AC-63MIA-interno
2 E-O	90	1.25	400.00	0.70	
3 vert	+	1.25	400.00	0.70	
19. VIC (VICTO		1.25	100.00	0.70	
,		22 200	11E 100	1 -	02/02/11 15/10/12
GMS-18	100209	32.290	115.100	15	02/02/11 15/10/13
1 N-S	0	1.25	300.00	0.70	AC-63MIA-interno
2 E-O	90	1.25	400.00	0.70	
3 vert	+	1.25	400.00	0.70	
	E DE LA TRII				
c ALTUS-ETNA	168	31.398	115.714	750	11/11/09 18/11/15
c 1 N-S	0	1.25	50.80	0.64	FBA interno
c 2 vert	+	1.25	50.60	0.65	
c 3 E-0	90	1.25	50.70	0.64	
C 3 E-O	90	1.25	50.70	U.64	